Metamath Proof Explorer


Theorem ominf

Description: The set of natural numbers is infinite. Corollary 6D(b) of Enderton p. 136. (Contributed by NM, 2-Jun-1998) Avoid ax-pow . (Revised by BTernaryTau, 2-Jan-2025)

Ref Expression
Assertion ominf ¬ωFin

Proof

Step Hyp Ref Expression
1 isfi ωFinxωωx
2 nnord xωOrdx
3 ordom Ordω
4 ordelssne OrdxOrdωxωxωxω
5 2 3 4 sylancl xωxωxωxω
6 5 ibi xωxωxω
7 df-pss xωxωxω
8 6 7 sylibr xωxω
9 nnfi xωxFin
10 ensymfib xFinxωωx
11 9 10 syl xωxωωx
12 11 biimpar xωωxxω
13 pssinf xωxω¬ωFin
14 8 12 13 syl2an2r xωωx¬ωFin
15 14 rexlimiva xωωx¬ωFin
16 1 15 sylbi ωFin¬ωFin
17 pm2.01 ωFin¬ωFin¬ωFin
18 16 17 ax-mp ¬ωFin