Metamath Proof Explorer


Theorem on3ind

Description: Triple induction over ordinals. (Contributed by Scott Fenton, 4-Sep-2024)

Ref Expression
Hypotheses on3ind.1 a=dφψ
on3ind.2 b=eψχ
on3ind.3 c=fχθ
on3ind.4 a=dτθ
on3ind.5 b=eητ
on3ind.6 b=eζθ
on3ind.7 c=fστ
on3ind.8 a=Xφρ
on3ind.9 b=Yρμ
on3ind.10 c=Zμλ
on3ind.i aOnbOncOndaebfcθdaebχdafcζdaψebfcτebσfcηφ
Assertion on3ind XOnYOnZOnλ

Proof

Step Hyp Ref Expression
1 on3ind.1 a=dφψ
2 on3ind.2 b=eψχ
3 on3ind.3 c=fχθ
4 on3ind.4 a=dτθ
5 on3ind.5 b=eητ
6 on3ind.6 b=eζθ
7 on3ind.7 c=fστ
8 on3ind.8 a=Xφρ
9 on3ind.9 b=Yρμ
10 on3ind.10 c=Zμλ
11 on3ind.i aOnbOncOndaebfcθdaebχdafcζdaψebfcτebσfcηφ
12 onfr EFrOn
13 epweon EWeOn
14 weso EWeOnEOrOn
15 sopo EOrOnEPoOn
16 13 14 15 mp2b EPoOn
17 epse ESeOn
18 predon aOnPredEOna=a
19 18 3ad2ant1 aOnbOncOnPredEOna=a
20 predon bOnPredEOnb=b
21 20 3ad2ant2 aOnbOncOnPredEOnb=b
22 predon cOnPredEOnc=c
23 22 3ad2ant3 aOnbOncOnPredEOnc=c
24 23 raleqdv aOnbOncOnfPredEOncθfcθ
25 21 24 raleqbidv aOnbOncOnePredEOnbfPredEOncθebfcθ
26 19 25 raleqbidv aOnbOncOndPredEOnaePredEOnbfPredEOncθdaebfcθ
27 21 raleqdv aOnbOncOnePredEOnbχebχ
28 19 27 raleqbidv aOnbOncOndPredEOnaePredEOnbχdaebχ
29 23 raleqdv aOnbOncOnfPredEOncζfcζ
30 19 29 raleqbidv aOnbOncOndPredEOnafPredEOncζdafcζ
31 26 28 30 3anbi123d aOnbOncOndPredEOnaePredEOnbfPredEOncθdPredEOnaePredEOnbχdPredEOnafPredEOncζdaebfcθdaebχdafcζ
32 19 raleqdv aOnbOncOndPredEOnaψdaψ
33 23 raleqdv aOnbOncOnfPredEOncτfcτ
34 21 33 raleqbidv aOnbOncOnePredEOnbfPredEOncτebfcτ
35 21 raleqdv aOnbOncOnePredEOnbσebσ
36 32 34 35 3anbi123d aOnbOncOndPredEOnaψePredEOnbfPredEOncτePredEOnbσdaψebfcτebσ
37 23 raleqdv aOnbOncOnfPredEOncηfcη
38 31 36 37 3anbi123d aOnbOncOndPredEOnaePredEOnbfPredEOncθdPredEOnaePredEOnbχdPredEOnafPredEOncζdPredEOnaψePredEOnbfPredEOncτePredEOnbσfPredEOncηdaebfcθdaebχdafcζdaψebfcτebσfcη
39 38 11 sylbid aOnbOncOndPredEOnaePredEOnbfPredEOncθdPredEOnaePredEOnbχdPredEOnafPredEOncζdPredEOnaψePredEOnbfPredEOncτePredEOnbσfPredEOncηφ
40 12 16 17 12 16 17 12 16 17 1 2 3 4 5 6 7 8 9 10 39 xpord3ind XOnYOnZOnλ