Description: Triple induction over ordinals. (Contributed by Scott Fenton, 4-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | on3ind.1 | |
|
on3ind.2 | |
||
on3ind.3 | |
||
on3ind.4 | |
||
on3ind.5 | |
||
on3ind.6 | |
||
on3ind.7 | |
||
on3ind.8 | |
||
on3ind.9 | |
||
on3ind.10 | |
||
on3ind.i | |
||
Assertion | on3ind | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | on3ind.1 | |
|
2 | on3ind.2 | |
|
3 | on3ind.3 | |
|
4 | on3ind.4 | |
|
5 | on3ind.5 | |
|
6 | on3ind.6 | |
|
7 | on3ind.7 | |
|
8 | on3ind.8 | |
|
9 | on3ind.9 | |
|
10 | on3ind.10 | |
|
11 | on3ind.i | |
|
12 | onfr | |
|
13 | epweon | |
|
14 | weso | |
|
15 | sopo | |
|
16 | 13 14 15 | mp2b | |
17 | epse | |
|
18 | predon | |
|
19 | 18 | 3ad2ant1 | |
20 | predon | |
|
21 | 20 | 3ad2ant2 | |
22 | predon | |
|
23 | 22 | 3ad2ant3 | |
24 | 23 | raleqdv | |
25 | 21 24 | raleqbidv | |
26 | 19 25 | raleqbidv | |
27 | 21 | raleqdv | |
28 | 19 27 | raleqbidv | |
29 | 23 | raleqdv | |
30 | 19 29 | raleqbidv | |
31 | 26 28 30 | 3anbi123d | |
32 | 19 | raleqdv | |
33 | 23 | raleqdv | |
34 | 21 33 | raleqbidv | |
35 | 21 | raleqdv | |
36 | 32 34 35 | 3anbi123d | |
37 | 23 | raleqdv | |
38 | 31 36 37 | 3anbi123d | |
39 | 38 11 | sylbid | |
40 | 12 16 17 12 16 17 12 16 17 1 2 3 4 5 6 7 8 9 10 39 | xpord3ind | |