Metamath Proof Explorer


Theorem oninfint

Description: The infimum of a non-empty class of ordinals is the intersection of that class. (Contributed by RP, 23-Jan-2025)

Ref Expression
Assertion oninfint AOnAsupAOnE=A

Proof

Step Hyp Ref Expression
1 epweon EWeOn
2 weso EWeOnEOrOn
3 1 2 mp1i AOnAEOrOn
4 oninton AOnAAOn
5 onint AOnAAA
6 intss1 xAAx
7 6 adantl AOnAxAAx
8 simpl AOnAAOn
9 8 sselda AOnAxAxOn
10 ontri1 AOnxOnAx¬xA
11 4 9 10 syl2an2r AOnAxAAx¬xA
12 7 11 mpbid AOnAxA¬xA
13 epelg AOnxEAxA
14 4 13 syl AOnAxEAxA
15 14 adantr AOnAxAxEAxA
16 12 15 mtbird AOnAxA¬xEA
17 3 4 5 16 infmin AOnAsupAOnE=A