Description: The infimum of a non-empty class of ordinals is the intersection of that class. (Contributed by RP, 23-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | oninfint | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epweon | |
|
2 | weso | |
|
3 | 1 2 | mp1i | |
4 | oninton | |
|
5 | onint | |
|
6 | intss1 | |
|
7 | 6 | adantl | |
8 | simpl | |
|
9 | 8 | sselda | |
10 | ontri1 | |
|
11 | 4 9 10 | syl2an2r | |
12 | 7 11 | mpbid | |
13 | epelg | |
|
14 | 4 13 | syl | |
15 | 14 | adantr | |
16 | 12 15 | mtbird | |
17 | 3 4 5 16 | infmin | |