Metamath Proof Explorer


Theorem onmaxnelsup

Description: Two ways to say the maximum element of a class of ordinals is also the supremum of that class. (Contributed by RP, 27-Jan-2025)

Ref Expression
Assertion onmaxnelsup AOn¬AAxAyAyx

Proof

Step Hyp Ref Expression
1 rexnal xA¬yAxy¬xAyAxy
2 ralnex yA¬xy¬yAxy
3 2 rexbii xAyA¬xyxA¬yAxy
4 ssunib AAxAyAxy
5 4 notbii ¬AA¬xAyAxy
6 1 3 5 3bitr4ri ¬AAxAyA¬xy
7 simpl AOnxAAOn
8 7 sselda AOnxAyAyOn
9 ssel2 AOnxAxOn
10 9 adantr AOnxAyAxOn
11 ontri1 yOnxOnyx¬xy
12 8 10 11 syl2anc AOnxAyAyx¬xy
13 12 ralbidva AOnxAyAyxyA¬xy
14 13 rexbidva AOnxAyAyxxAyA¬xy
15 6 14 bitr4id AOn¬AAxAyAyx