Metamath Proof Explorer


Theorem onsucelab

Description: The successor of every ordinal is an element of the class of successor ordinals. Definition 1.11 of Schloeder p. 2. (Contributed by RP, 16-Jan-2025)

Ref Expression
Assertion onsucelab AOnsucAaOn|bOna=sucb

Proof

Step Hyp Ref Expression
1 onsuc AOnsucAOn
2 eqid sucA=sucA
3 id AOnAOn
4 suceq b=Asucb=sucA
5 4 eqeq2d b=AsucA=sucbsucA=sucA
6 5 adantl AOnb=AsucA=sucbsucA=sucA
7 3 6 rspcedv AOnsucA=sucAbOnsucA=sucb
8 2 7 mpi AOnbOnsucA=sucb
9 eqeq1 a=sucAa=sucbsucA=sucb
10 9 rexbidv a=sucAbOna=sucbbOnsucA=sucb
11 10 elrab sucAaOn|bOna=sucbsucAOnbOnsucA=sucb
12 1 8 11 sylanbrc AOnsucAaOn|bOna=sucb