Description: The supremum of a set of ordinals is the union of that set. Lemma 2.10 of Schloeder p. 5. (Contributed by RP, 19-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | onsupuni | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssonuni | |
|
2 | 1 | impcom | |
3 | elssuni | |
|
4 | 3 | rgen | |
5 | simpl | |
|
6 | 5 | sselda | |
7 | 2 | adantr | |
8 | ontri1 | |
|
9 | 6 7 8 | syl2anc | |
10 | epel | |
|
11 | 10 | notbii | |
12 | 9 11 | bitr4di | |
13 | 12 | ralbidva | |
14 | 4 13 | mpbii | |
15 | 2 | adantr | |
16 | epelg | |
|
17 | 15 16 | syl | |
18 | 17 | biimpd | |
19 | eluni2 | |
|
20 | epel | |
|
21 | 20 | rexbii | |
22 | 19 21 | bitr4i | |
23 | 18 22 | imbitrdi | |
24 | 23 | ralrimiva | |
25 | epweon | |
|
26 | weso | |
|
27 | 25 26 | mp1i | |
28 | 27 | eqsup | |
29 | 2 14 24 28 | mp3and | |