Metamath Proof Explorer


Theorem onsupuni

Description: The supremum of a set of ordinals is the union of that set. Lemma 2.10 of Schloeder p. 5. (Contributed by RP, 19-Jan-2025)

Ref Expression
Assertion onsupuni AOnAVsupAOnE=A

Proof

Step Hyp Ref Expression
1 ssonuni AVAOnAOn
2 1 impcom AOnAVAOn
3 elssuni yAyA
4 3 rgen yAyA
5 simpl AOnAVAOn
6 5 sselda AOnAVyAyOn
7 2 adantr AOnAVyAAOn
8 ontri1 yOnAOnyA¬Ay
9 6 7 8 syl2anc AOnAVyAyA¬Ay
10 epel AEyAy
11 10 notbii ¬AEy¬Ay
12 9 11 bitr4di AOnAVyAyA¬AEy
13 12 ralbidva AOnAVyAyAyA¬AEy
14 4 13 mpbii AOnAVyA¬AEy
15 2 adantr AOnAVyOnAOn
16 epelg AOnyEAyA
17 15 16 syl AOnAVyOnyEAyA
18 17 biimpd AOnAVyOnyEAyA
19 eluni2 yAxAyx
20 epel yExyx
21 20 rexbii xAyExxAyx
22 19 21 bitr4i yAxAyEx
23 18 22 imbitrdi AOnAVyOnyEAxAyEx
24 23 ralrimiva AOnAVyOnyEAxAyEx
25 epweon EWeOn
26 weso EWeOnEOrOn
27 25 26 mp1i AOnAVEOrOn
28 27 eqsup AOnAVAOnyA¬AEyyOnyEAxAyExsupAOnE=A
29 2 14 24 28 mp3and AOnAVsupAOnE=A