Metamath Proof Explorer


Theorem opeqsng

Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 15-Jul-2022) (Avoid depending on this detail.)

Ref Expression
Assertion opeqsng A V B W A B = C A = B C = A

Proof

Step Hyp Ref Expression
1 dfopg A V B W A B = A A B
2 1 eqeq1d A V B W A B = C A A B = C
3 snex A V
4 prex A B V
5 3 4 preqsn A A B = C A = A B A B = C
6 5 a1i A V B W A A B = C A = A B A B = C
7 eqcom A = A B A B = A
8 simpl A V B W A V
9 simpr A V B W B W
10 8 9 preqsnd A V B W A B = A A = A B = A
11 simpr A = A B = A B = A
12 eqid A = A
13 12 jctl B = A A = A B = A
14 11 13 impbii A = A B = A B = A
15 eqcom B = A A = B
16 14 15 bitri A = A B = A A = B
17 10 16 bitrdi A V B W A B = A A = B
18 7 17 bitrid A V B W A = A B A = B
19 18 anbi1d A V B W A = A B A B = C A = B A B = C
20 dfsn2 A = A A
21 preq2 A = B A A = A B
22 20 21 eqtr2id A = B A B = A
23 22 eqeq1d A = B A B = C A = C
24 eqcom A = C C = A
25 23 24 bitrdi A = B A B = C C = A
26 25 a1i A V B W A = B A B = C C = A
27 26 pm5.32d A V B W A = B A B = C A = B C = A
28 19 27 bitrd A V B W A = A B A B = C A = B C = A
29 2 6 28 3bitrd A V B W A B = C A = B C = A