Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 15-Jul-2022) (Avoid depending on this detail.)
Ref | Expression | ||
---|---|---|---|
Assertion | opeqsng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopg | |
|
2 | 1 | eqeq1d | |
3 | snex | |
|
4 | prex | |
|
5 | 3 4 | preqsn | |
6 | 5 | a1i | |
7 | eqcom | |
|
8 | simpl | |
|
9 | simpr | |
|
10 | 8 9 | preqsnd | |
11 | simpr | |
|
12 | eqid | |
|
13 | 12 | jctl | |
14 | 11 13 | impbii | |
15 | eqcom | |
|
16 | 14 15 | bitri | |
17 | 10 16 | bitrdi | |
18 | 7 17 | bitrid | |
19 | 18 | anbi1d | |
20 | dfsn2 | |
|
21 | preq2 | |
|
22 | 20 21 | eqtr2id | |
23 | 22 | eqeq1d | |
24 | eqcom | |
|
25 | 23 24 | bitrdi | |
26 | 25 | a1i | |
27 | 26 | pm5.32d | |
28 | 19 27 | bitrd | |
29 | 2 6 28 | 3bitrd | |