Metamath Proof Explorer


Theorem opeqsng

Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 15-Jul-2022) (Avoid depending on this detail.)

Ref Expression
Assertion opeqsng AVBWAB=CA=BC=A

Proof

Step Hyp Ref Expression
1 dfopg AVBWAB=AAB
2 1 eqeq1d AVBWAB=CAAB=C
3 snex AV
4 prex ABV
5 3 4 preqsn AAB=CA=ABAB=C
6 5 a1i AVBWAAB=CA=ABAB=C
7 eqcom A=ABAB=A
8 simpl AVBWAV
9 simpr AVBWBW
10 8 9 preqsnd AVBWAB=AA=AB=A
11 simpr A=AB=AB=A
12 eqid A=A
13 12 jctl B=AA=AB=A
14 11 13 impbii A=AB=AB=A
15 eqcom B=AA=B
16 14 15 bitri A=AB=AA=B
17 10 16 bitrdi AVBWAB=AA=B
18 7 17 bitrid AVBWA=ABA=B
19 18 anbi1d AVBWA=ABAB=CA=BAB=C
20 dfsn2 A=AA
21 preq2 A=BAA=AB
22 20 21 eqtr2id A=BAB=A
23 22 eqeq1d A=BAB=CA=C
24 eqcom A=CC=A
25 23 24 bitrdi A=BAB=CC=A
26 25 a1i AVBWA=BAB=CC=A
27 26 pm5.32d AVBWA=BAB=CA=BC=A
28 19 27 bitrd AVBWA=ABAB=CA=BC=A
29 2 6 28 3bitrd AVBWAB=CA=BC=A