Metamath Proof Explorer


Theorem opeqsng

Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 15-Jul-2022) (Avoid depending on this detail.)

Ref Expression
Assertion opeqsng A V B W A B = C A = B C = A

Proof

Step Hyp Ref Expression
1 dfopg A V B W A B = A A B
2 1 eqeq1d A V B W A B = C A A B = C
3 snex A V
4 prex A B V
5 3 4 preqsn A A B = C A = A B A B = C
6 5 a1i A V B W A A B = C A = A B A B = C
7 eqcom A = A B A B = A
8 elex A V A V
9 8 adantr A V B W A V
10 elex B W B V
11 10 adantl A V B W B V
12 9 11 preqsnd A V B W A B = A A = A B = A
13 simpr A = A B = A B = A
14 eqid A = A
15 14 jctl B = A A = A B = A
16 13 15 impbii A = A B = A B = A
17 eqcom B = A A = B
18 16 17 bitri A = A B = A A = B
19 12 18 syl6bb A V B W A B = A A = B
20 7 19 syl5bb A V B W A = A B A = B
21 20 anbi1d A V B W A = A B A B = C A = B A B = C
22 dfsn2 A = A A
23 preq2 A = B A A = A B
24 22 23 syl5req A = B A B = A
25 24 eqeq1d A = B A B = C A = C
26 eqcom A = C C = A
27 25 26 syl6bb A = B A B = C C = A
28 27 a1i A V B W A = B A B = C C = A
29 28 pm5.32d A V B W A = B A B = C A = B C = A
30 21 29 bitrd A V B W A = A B A B = C A = B C = A
31 2 6 30 3bitrd A V B W A B = C A = B C = A