Metamath Proof Explorer


Theorem oppcsect

Description: A section in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses oppcsect.b B = Base C
oppcsect.o O = oppCat C
oppcsect.c φ C Cat
oppcsect.x φ X B
oppcsect.y φ Y B
oppcsect.s S = Sect C
oppcsect.t T = Sect O
Assertion oppcsect φ F X T Y G G X S Y F

Proof

Step Hyp Ref Expression
1 oppcsect.b B = Base C
2 oppcsect.o O = oppCat C
3 oppcsect.c φ C Cat
4 oppcsect.x φ X B
5 oppcsect.y φ Y B
6 oppcsect.s S = Sect C
7 oppcsect.t T = Sect O
8 eqid comp C = comp C
9 4 adantr φ G X Hom C Y F Y Hom C X X B
10 5 adantr φ G X Hom C Y F Y Hom C X Y B
11 1 8 2 9 10 9 oppcco φ G X Hom C Y F Y Hom C X G X Y comp O X F = F X Y comp C X G
12 3 adantr φ G X Hom C Y F Y Hom C X C Cat
13 eqid Id C = Id C
14 2 13 oppcid C Cat Id O = Id C
15 12 14 syl φ G X Hom C Y F Y Hom C X Id O = Id C
16 15 fveq1d φ G X Hom C Y F Y Hom C X Id O X = Id C X
17 11 16 eqeq12d φ G X Hom C Y F Y Hom C X G X Y comp O X F = Id O X F X Y comp C X G = Id C X
18 17 pm5.32da φ G X Hom C Y F Y Hom C X G X Y comp O X F = Id O X G X Hom C Y F Y Hom C X F X Y comp C X G = Id C X
19 df-3an F X Hom O Y G Y Hom O X G X Y comp O X F = Id O X F X Hom O Y G Y Hom O X G X Y comp O X F = Id O X
20 eqid Hom C = Hom C
21 20 2 oppchom X Hom O Y = Y Hom C X
22 21 eleq2i F X Hom O Y F Y Hom C X
23 20 2 oppchom Y Hom O X = X Hom C Y
24 23 eleq2i G Y Hom O X G X Hom C Y
25 22 24 anbi12ci F X Hom O Y G Y Hom O X G X Hom C Y F Y Hom C X
26 25 anbi1i F X Hom O Y G Y Hom O X G X Y comp O X F = Id O X G X Hom C Y F Y Hom C X G X Y comp O X F = Id O X
27 19 26 bitri F X Hom O Y G Y Hom O X G X Y comp O X F = Id O X G X Hom C Y F Y Hom C X G X Y comp O X F = Id O X
28 df-3an G X Hom C Y F Y Hom C X F X Y comp C X G = Id C X G X Hom C Y F Y Hom C X F X Y comp C X G = Id C X
29 18 27 28 3bitr4g φ F X Hom O Y G Y Hom O X G X Y comp O X F = Id O X G X Hom C Y F Y Hom C X F X Y comp C X G = Id C X
30 2 1 oppcbas B = Base O
31 eqid Hom O = Hom O
32 eqid comp O = comp O
33 eqid Id O = Id O
34 2 oppccat C Cat O Cat
35 3 34 syl φ O Cat
36 30 31 32 33 7 35 4 5 issect φ F X T Y G F X Hom O Y G Y Hom O X G X Y comp O X F = Id O X
37 1 20 8 13 6 3 4 5 issect φ G X S Y F G X Hom C Y F Y Hom C X F X Y comp C X G = Id C X
38 29 36 37 3bitr4d φ F X T Y G G X S Y F