Metamath Proof Explorer


Theorem opprsubg

Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014)

Ref Expression
Hypothesis opprbas.1 O=opprR
Assertion opprsubg SubGrpR=SubGrpO

Proof

Step Hyp Ref Expression
1 opprbas.1 O=opprR
2 eqid BaseR=BaseR
3 1 2 opprbas BaseR=BaseO
4 eqid +R=+R
5 1 4 oppradd +R=+O
6 3 5 grpprop RGrpOGrp
7 biid xBaseRxBaseR
8 eqid R𝑠x=R𝑠x
9 8 2 ressbas xVxBaseR=BaseR𝑠x
10 9 elv xBaseR=BaseR𝑠x
11 eqid O𝑠x=O𝑠x
12 11 3 ressbas xVxBaseR=BaseO𝑠x
13 12 elv xBaseR=BaseO𝑠x
14 10 13 eqtr3i BaseR𝑠x=BaseO𝑠x
15 8 4 ressplusg xV+R=+R𝑠x
16 11 5 ressplusg xV+R=+O𝑠x
17 15 16 eqtr3d xV+R𝑠x=+O𝑠x
18 17 elv +R𝑠x=+O𝑠x
19 14 18 grpprop R𝑠xGrpO𝑠xGrp
20 6 7 19 3anbi123i RGrpxBaseRR𝑠xGrpOGrpxBaseRO𝑠xGrp
21 2 issubg xSubGrpRRGrpxBaseRR𝑠xGrp
22 3 issubg xSubGrpOOGrpxBaseRO𝑠xGrp
23 20 21 22 3bitr4i xSubGrpRxSubGrpO
24 23 eqriv SubGrpR=SubGrpO