Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | opprbas.1 | |
|
Assertion | opprsubg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opprbas.1 | |
|
2 | eqid | |
|
3 | 1 2 | opprbas | |
4 | eqid | |
|
5 | 1 4 | oppradd | |
6 | 3 5 | grpprop | |
7 | biid | |
|
8 | eqid | |
|
9 | 8 2 | ressbas | |
10 | 9 | elv | |
11 | eqid | |
|
12 | 11 3 | ressbas | |
13 | 12 | elv | |
14 | 10 13 | eqtr3i | |
15 | 8 4 | ressplusg | |
16 | 11 5 | ressplusg | |
17 | 15 16 | eqtr3d | |
18 | 17 | elv | |
19 | 14 18 | grpprop | |
20 | 6 7 19 | 3anbi123i | |
21 | 2 | issubg | |
22 | 3 | issubg | |
23 | 20 21 22 | 3bitr4i | |
24 | 23 | eqriv | |