Metamath Proof Explorer


Theorem opsqrlem2

Description: Lemma for opsqri . FN is the recursive function A_n (starting at n=1 instead of 0) of Theorem 9.4-2 of Kreyszig p. 476. (Contributed by NM, 17-Aug-2006) (New usage is discouraged.)

Ref Expression
Hypotheses opsqrlem2.1 THrmOp
opsqrlem2.2 S=xHrmOp,yHrmOpx+op12·opT-opxx
opsqrlem2.3 F=seq1S×0hop
Assertion opsqrlem2 F1=0hop

Proof

Step Hyp Ref Expression
1 opsqrlem2.1 THrmOp
2 opsqrlem2.2 S=xHrmOp,yHrmOpx+op12·opT-opxx
3 opsqrlem2.3 F=seq1S×0hop
4 3 fveq1i F1=seq1S×0hop1
5 1z 1
6 seq1 1seq1S×0hop1=×0hop1
7 5 6 ax-mp seq1S×0hop1=×0hop1
8 1nn 1
9 0hmop 0hopHrmOp
10 9 elexi 0hopV
11 10 fvconst2 1×0hop1=0hop
12 8 11 ax-mp ×0hop1=0hop
13 4 7 12 3eqtri F1=0hop