Metamath Proof Explorer


Theorem opthwiener

Description: Justification theorem for the ordered pair definition in Norbert Wiener, A simplification of the logic of relations, Proceedings of the Cambridge Philosophical Society, 1914, vol. 17, pp.387-390. It is also shown as a definition in Enderton p. 36 and as Exercise 4.8(b) of Mendelson p. 230. It is meaningful only for classes that exist as sets (i.e., are not proper classes). See df-op for other ordered pair definitions. (Contributed by NM, 28-Sep-2003)

Ref Expression
Hypotheses opthw.1 AV
opthw.2 BV
Assertion opthwiener AB=CDA=CB=D

Proof

Step Hyp Ref Expression
1 opthw.1 AV
2 opthw.2 BV
3 id AB=CDAB=CD
4 snex BV
5 4 prid2 BAB
6 eleq2 AB=CDBABBCD
7 5 6 mpbii AB=CDBCD
8 4 elpr BCDB=CB=D
9 7 8 sylib AB=CDB=CB=D
10 0ex V
11 10 prid2 C
12 2 snnz B
13 10 elsn B=B
14 eqcom =BB=
15 13 14 bitri BB=
16 12 15 nemtbir ¬B
17 nelneq2 C¬B¬C=B
18 11 16 17 mp2an ¬C=B
19 eqcom C=BB=C
20 18 19 mtbi ¬B=C
21 biorf ¬B=CB=DB=CB=D
22 20 21 ax-mp B=DB=CB=D
23 9 22 sylibr AB=CDB=D
24 23 preq2d AB=CDCB=CD
25 3 24 eqtr4d AB=CDAB=CB
26 prex AV
27 prex CV
28 26 27 preqr1 AB=CBA=C
29 25 28 syl AB=CDA=C
30 snex AV
31 snex CV
32 30 31 preqr1 A=CA=C
33 29 32 syl AB=CDA=C
34 1 sneqr A=CA=C
35 33 34 syl AB=CDA=C
36 snex BV
37 36 sneqr B=DB=D
38 23 37 syl AB=CDB=D
39 2 sneqr B=DB=D
40 38 39 syl AB=CDB=D
41 35 40 jca AB=CDA=CB=D
42 sneq A=CA=C
43 42 preq1d A=CA=C
44 43 preq1d A=CAB=CB
45 sneq B=DB=D
46 sneq B=DB=D
47 45 46 syl B=DB=D
48 47 preq2d B=DCB=CD
49 44 48 sylan9eq A=CB=DAB=CD
50 41 49 impbii AB=CDA=CB=D