Description: Justification theorem for the ordered pair definition in Norbert Wiener, A simplification of the logic of relations, Proceedings of the Cambridge Philosophical Society, 1914, vol. 17, pp.387-390. It is also shown as a definition in Enderton p. 36 and as Exercise 4.8(b) of Mendelson p. 230. It is meaningful only for classes that exist as sets (i.e., are not proper classes). See df-op for other ordered pair definitions. (Contributed by NM, 28-Sep-2003)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opthw.1 | |
|
opthw.2 | |
||
Assertion | opthwiener | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthw.1 | |
|
2 | opthw.2 | |
|
3 | id | |
|
4 | snex | |
|
5 | 4 | prid2 | |
6 | eleq2 | |
|
7 | 5 6 | mpbii | |
8 | 4 | elpr | |
9 | 7 8 | sylib | |
10 | 0ex | |
|
11 | 10 | prid2 | |
12 | 2 | snnz | |
13 | 10 | elsn | |
14 | eqcom | |
|
15 | 13 14 | bitri | |
16 | 12 15 | nemtbir | |
17 | nelneq2 | |
|
18 | 11 16 17 | mp2an | |
19 | eqcom | |
|
20 | 18 19 | mtbi | |
21 | biorf | |
|
22 | 20 21 | ax-mp | |
23 | 9 22 | sylibr | |
24 | 23 | preq2d | |
25 | 3 24 | eqtr4d | |
26 | prex | |
|
27 | prex | |
|
28 | 26 27 | preqr1 | |
29 | 25 28 | syl | |
30 | snex | |
|
31 | snex | |
|
32 | 30 31 | preqr1 | |
33 | 29 32 | syl | |
34 | 1 | sneqr | |
35 | 33 34 | syl | |
36 | snex | |
|
37 | 36 | sneqr | |
38 | 23 37 | syl | |
39 | 2 | sneqr | |
40 | 38 39 | syl | |
41 | 35 40 | jca | |
42 | sneq | |
|
43 | 42 | preq1d | |
44 | 43 | preq1d | |
45 | sneq | |
|
46 | sneq | |
|
47 | 45 46 | syl | |
48 | 47 | preq2d | |
49 | 44 48 | sylan9eq | |
50 | 41 49 | impbii | |