Metamath Proof Explorer


Theorem or2expropbi

Description: If two classes are strictly ordered, there is an ordered pair of both classes fulfilling a wff iff there is an unordered pair of both classes fulfilling the wff. (Contributed by AV, 26-Aug-2023)

Ref Expression
Assertion or2expropbi XVROrXAXBXARBabAB=abaRbφabAB=abaRbφ

Proof

Step Hyp Ref Expression
1 nfv aXVROrXAXBXARB
2 nfv aAB=xy
3 nfcv _ay
4 nfsbc1v a[˙x/a]˙aRbφ
5 3 4 nfsbcw a[˙y/b]˙[˙x/a]˙aRbφ
6 2 5 nfan aAB=xy[˙y/b]˙[˙x/a]˙aRbφ
7 6 nfex ayAB=xy[˙y/b]˙[˙x/a]˙aRbφ
8 7 nfex axyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
9 nfv bXVROrXAXBXARB
10 nfv bAB=xy
11 nfsbc1v b[˙y/b]˙[˙x/a]˙aRbφ
12 10 11 nfan bAB=xy[˙y/b]˙[˙x/a]˙aRbφ
13 12 nfex byAB=xy[˙y/b]˙[˙x/a]˙aRbφ
14 13 nfex bxyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
15 vex aV
16 vex bV
17 preq12bg AXBXaVbVAB=abA=aB=bA=bB=a
18 15 16 17 mpanr12 AXBXAB=abA=aB=bA=bB=a
19 18 3adant3 AXBXARBAB=abA=aB=bA=bB=a
20 19 adantl XVROrXAXBXARBAB=abA=aB=bA=bB=a
21 or2expropbilem1 AXBXA=aB=baRbφxyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
22 21 3adant3 AXBXARBA=aB=baRbφxyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
23 22 adantl XVROrXAXBXARBA=aB=baRbφxyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
24 breq12 B=aA=bBRAaRb
25 24 ancoms A=bB=aBRAaRb
26 25 adantl XVROrXAXBXARBA=bB=aBRAaRb
27 soasym ROrXAXBXARB¬BRA
28 27 ex ROrXAXBXARB¬BRA
29 28 adantl XVROrXAXBXARB¬BRA
30 29 expd XVROrXAXBXARB¬BRA
31 30 3imp2 XVROrXAXBXARB¬BRA
32 31 pm2.21d XVROrXAXBXARBBRAφxyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
33 32 adantr XVROrXAXBXARBA=bB=aBRAφxyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
34 26 33 sylbird XVROrXAXBXARBA=bB=aaRbφxyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
35 34 impd XVROrXAXBXARBA=bB=aaRbφxyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
36 35 ex XVROrXAXBXARBA=bB=aaRbφxyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
37 23 36 jaod XVROrXAXBXARBA=aB=bA=bB=aaRbφxyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
38 20 37 sylbid XVROrXAXBXARBAB=abaRbφxyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
39 38 impd XVROrXAXBXARBAB=abaRbφxyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
40 9 14 39 exlimd XVROrXAXBXARBbAB=abaRbφxyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
41 1 8 40 exlimd XVROrXAXBXARBabAB=abaRbφxyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
42 or2expropbilem2 abAB=abaRbφxyAB=xy[˙y/b]˙[˙x/a]˙aRbφ
43 41 42 syl6ibr XVROrXAXBXARBabAB=abaRbφabAB=abaRbφ
44 oppr AXBXAB=abAB=ab
45 44 anim1d AXBXAB=abaRbφAB=abaRbφ
46 45 2eximdv AXBXabAB=abaRbφabAB=abaRbφ
47 46 3adant3 AXBXARBabAB=abaRbφabAB=abaRbφ
48 47 adantl XVROrXAXBXARBabAB=abaRbφabAB=abaRbφ
49 43 48 impbid XVROrXAXBXARBabAB=abaRbφabAB=abaRbφ