Description: If two classes are strictly ordered, there is an ordered pair of both classes fulfilling a wff iff there is an unordered pair of both classes fulfilling the wff. (Contributed by AV, 26-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | or2expropbi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv | |
|
2 | nfv | |
|
3 | nfcv | |
|
4 | nfsbc1v | |
|
5 | 3 4 | nfsbcw | |
6 | 2 5 | nfan | |
7 | 6 | nfex | |
8 | 7 | nfex | |
9 | nfv | |
|
10 | nfv | |
|
11 | nfsbc1v | |
|
12 | 10 11 | nfan | |
13 | 12 | nfex | |
14 | 13 | nfex | |
15 | vex | |
|
16 | vex | |
|
17 | preq12bg | |
|
18 | 15 16 17 | mpanr12 | |
19 | 18 | 3adant3 | |
20 | 19 | adantl | |
21 | or2expropbilem1 | |
|
22 | 21 | 3adant3 | |
23 | 22 | adantl | |
24 | breq12 | |
|
25 | 24 | ancoms | |
26 | 25 | adantl | |
27 | soasym | |
|
28 | 27 | ex | |
29 | 28 | adantl | |
30 | 29 | expd | |
31 | 30 | 3imp2 | |
32 | 31 | pm2.21d | |
33 | 32 | adantr | |
34 | 26 33 | sylbird | |
35 | 34 | impd | |
36 | 35 | ex | |
37 | 23 36 | jaod | |
38 | 20 37 | sylbid | |
39 | 38 | impd | |
40 | 9 14 39 | exlimd | |
41 | 1 8 40 | exlimd | |
42 | or2expropbilem2 | |
|
43 | 41 42 | syl6ibr | |
44 | oppr | |
|
45 | 44 | anim1d | |
46 | 45 | 2eximdv | |
47 | 46 | 3adant3 | |
48 | 47 | adantl | |
49 | 43 48 | impbid | |