Metamath Proof Explorer


Theorem ordunidif

Description: The union of an ordinal stays the same if a subset equal to one of its elements is removed. (Contributed by NM, 10-Dec-2004)

Ref Expression
Assertion ordunidif OrdABAAB=A

Proof

Step Hyp Ref Expression
1 ordelon OrdABABOn
2 onelss BOnxBxB
3 1 2 syl OrdABAxBxB
4 eloni BOnOrdB
5 ordirr OrdB¬BB
6 4 5 syl BOn¬BB
7 eldif BABBA¬BB
8 7 simplbi2 BA¬BBBAB
9 6 8 syl5 BABOnBAB
10 9 adantl OrdABABOnBAB
11 1 10 mpd OrdABABAB
12 3 11 jctild OrdABAxBBABxB
13 12 adantr OrdABAxAxBBABxB
14 sseq2 y=BxyxB
15 14 rspcev BABxByABxy
16 13 15 syl6 OrdABAxAxByABxy
17 eldif xABxA¬xB
18 17 biimpri xA¬xBxAB
19 ssid xx
20 18 19 jctir xA¬xBxABxx
21 20 ex xA¬xBxABxx
22 sseq2 y=xxyxx
23 22 rspcev xABxxyABxy
24 21 23 syl6 xA¬xByABxy
25 24 adantl OrdABAxA¬xByABxy
26 16 25 pm2.61d OrdABAxAyABxy
27 26 ralrimiva OrdABAxAyABxy
28 unidif xAyABxyAB=A
29 27 28 syl OrdABAAB=A