Metamath Proof Explorer


Theorem ormklocald

Description: If elements of a certain sequence are ordered with respect to a certain relation, then its consecutive elements satisfy that relation (so-called "local monotonicity"). (Contributed by Ender Ting, 30-Apr-2025)

Ref Expression
Hypotheses ormklocald.1 φ R Or S
ormklocald.2 φ k 0 ..^ T + 1 B k S
ormklocald.3 φ k 0 ..^ T t 1 ..^ T + 1 k < t B k R B t
Assertion ormklocald φ k 0 ..^ T B k R B k + 1

Proof

Step Hyp Ref Expression
1 ormklocald.1 φ R Or S
2 ormklocald.2 φ k 0 ..^ T + 1 B k S
3 ormklocald.3 φ k 0 ..^ T t 1 ..^ T + 1 k < t B k R B t
4 ovex k + 1 V
5 4 isseti t t = k + 1
6 elfzoelz k 0 ..^ T k
7 6 zred k 0 ..^ T k
8 7 ltp1d k 0 ..^ T k < k + 1
9 breq2 t = k + 1 k < t k < k + 1
10 8 9 syl5ibrcom k 0 ..^ T t = k + 1 k < t
11 10 adantl φ k 0 ..^ T t = k + 1 k < t
12 1z 1
13 fzoaddel k 0 ..^ T 1 k + 1 0 + 1 ..^ T + 1
14 12 13 mpan2 k 0 ..^ T k + 1 0 + 1 ..^ T + 1
15 0p1e1 0 + 1 = 1
16 15 oveq1i 0 + 1 ..^ T + 1 = 1 ..^ T + 1
17 14 16 eleqtrdi k 0 ..^ T k + 1 1 ..^ T + 1
18 eleq1 t = k + 1 t 1 ..^ T + 1 k + 1 1 ..^ T + 1
19 17 18 syl5ibrcom k 0 ..^ T t = k + 1 t 1 ..^ T + 1
20 19 adantl φ k 0 ..^ T t = k + 1 t 1 ..^ T + 1
21 3 r19.21bi φ k 0 ..^ T t 1 ..^ T + 1 k < t B k R B t
22 21 r19.21bi φ k 0 ..^ T t 1 ..^ T + 1 k < t B k R B t
23 22 ex φ k 0 ..^ T t 1 ..^ T + 1 k < t B k R B t
24 20 23 syld φ k 0 ..^ T t = k + 1 k < t B k R B t
25 11 24 mpdd φ k 0 ..^ T t = k + 1 B k R B t
26 fveq2 t = k + 1 B t = B k + 1
27 26 breq2d t = k + 1 B k R B t B k R B k + 1
28 25 27 mpbidi φ k 0 ..^ T t = k + 1 B k R B k + 1
29 28 eximdv φ k 0 ..^ T t t = k + 1 t B k R B k + 1
30 5 29 mpi φ k 0 ..^ T t B k R B k + 1
31 ax5e t B k R B k + 1 B k R B k + 1
32 30 31 syl φ k 0 ..^ T B k R B k + 1
33 32 ralrimiva φ k 0 ..^ T B k R B k + 1