Metamath Proof Explorer


Theorem ov

Description: The value of an operation class abstraction. (Contributed by NM, 16-May-1995) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypotheses ov.1 CV
ov.2 x=Aφψ
ov.3 y=Bψχ
ov.4 z=Cχθ
ov.5 xRyS∃!zφ
ov.6 F=xyz|xRySφ
Assertion ov ARBSAFB=Cθ

Proof

Step Hyp Ref Expression
1 ov.1 CV
2 ov.2 x=Aφψ
3 ov.3 y=Bψχ
4 ov.4 z=Cχθ
5 ov.5 xRyS∃!zφ
6 ov.6 F=xyz|xRySφ
7 df-ov AFB=FAB
8 6 fveq1i FAB=xyz|xRySφAB
9 7 8 eqtri AFB=xyz|xRySφAB
10 9 eqeq1i AFB=Cxyz|xRySφAB=C
11 5 fnoprab xyz|xRySφFnxy|xRyS
12 eleq1 x=AxRAR
13 12 anbi1d x=AxRySARyS
14 eleq1 y=BySBS
15 14 anbi2d y=BARySARBS
16 13 15 opelopabg ARBSABxy|xRySARBS
17 16 ibir ARBSABxy|xRyS
18 fnopfvb xyz|xRySφFnxy|xRySABxy|xRySxyz|xRySφAB=CABCxyz|xRySφ
19 11 17 18 sylancr ARBSxyz|xRySφAB=CABCxyz|xRySφ
20 13 2 anbi12d x=AxRySφARySψ
21 15 3 anbi12d y=BARySψARBSχ
22 4 anbi2d z=CARBSχARBSθ
23 20 21 22 eloprabg ARBSCVABCxyz|xRySφARBSθ
24 1 23 mp3an3 ARBSABCxyz|xRySφARBSθ
25 19 24 bitrd ARBSxyz|xRySφAB=CARBSθ
26 10 25 bitrid ARBSAFB=CARBSθ
27 26 bianabs ARBSAFB=Cθ