Metamath Proof Explorer


Theorem pclclN

Description: Closure of the projective subspace closure function. (Contributed by NM, 8-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclfval.a A=AtomsK
pclfval.s S=PSubSpK
pclfval.c U=PClK
Assertion pclclN KVXAUXS

Proof

Step Hyp Ref Expression
1 pclfval.a A=AtomsK
2 pclfval.s S=PSubSpK
3 pclfval.c U=PClK
4 1 2 3 pclvalN KVXAUX=yS|Xy
5 1 2 atpsubN KVAS
6 sseq2 y=AXyXA
7 6 intminss ASXAyS|XyA
8 5 7 sylan KVXAyS|XyA
9 r19.26 ySXypyXyqyySXypyySXyqy
10 jcab XypyqyXypyXyqy
11 10 ralbii ySXypyqyySXypyXyqy
12 vex pV
13 12 elintrab pyS|XyySXypy
14 vex qV
15 14 elintrab qyS|XyySXyqy
16 13 15 anbi12i pyS|XyqyS|XyySXypyySXyqy
17 9 11 16 3bitr4ri pyS|XyqyS|XyySXypyqy
18 simpll1 KVrKpjoinKqrAySpyqyKV
19 simplr KVrKpjoinKqrAySpyqyyS
20 simpll3 KVrKpjoinKqrAySpyqyrA
21 simprl KVrKpjoinKqrAySpyqypy
22 simprr KVrKpjoinKqrAySpyqyqy
23 simpll2 KVrKpjoinKqrAySpyqyrKpjoinKq
24 eqid K=K
25 eqid joinK=joinK
26 24 25 1 2 psubspi2N KVySrApyqyrKpjoinKqry
27 18 19 20 21 22 23 26 syl33anc KVrKpjoinKqrAySpyqyry
28 27 ex KVrKpjoinKqrAySpyqyry
29 28 imim2d KVrKpjoinKqrAySXypyqyXyry
30 29 ralimdva KVrKpjoinKqrAySXypyqyySXyry
31 vex rV
32 31 elintrab ryS|XyySXyry
33 30 32 imbitrrdi KVrKpjoinKqrAySXypyqyryS|Xy
34 33 3exp KVrKpjoinKqrAySXypyqyryS|Xy
35 34 com24 KVySXypyqyrArKpjoinKqryS|Xy
36 17 35 biimtrid KVpyS|XyqyS|XyrArKpjoinKqryS|Xy
37 36 ralrimdv KVpyS|XyqyS|XyrArKpjoinKqryS|Xy
38 37 ralrimivv KVpyS|XyqyS|XyrArKpjoinKqryS|Xy
39 38 adantr KVXApyS|XyqyS|XyrArKpjoinKqryS|Xy
40 24 25 1 2 ispsubsp KVyS|XySyS|XyApyS|XyqyS|XyrArKpjoinKqryS|Xy
41 40 adantr KVXAyS|XySyS|XyApyS|XyqyS|XyrArKpjoinKqryS|Xy
42 8 39 41 mpbir2and KVXAyS|XyS
43 4 42 eqeltrd KVXAUXS