Metamath Proof Explorer


Theorem pcmul

Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion pcmul PAA0BB0PpCntAB=PpCntA+PpCntB

Proof

Step Hyp Ref Expression
1 eqid supn0|PnA<=supn0|PnA<
2 eqid supn0|PnB<=supn0|PnB<
3 eqid supn0|PnAB<=supn0|PnAB<
4 1 2 3 pcpremul PAA0BB0supn0|PnA<+supn0|PnB<=supn0|PnAB<
5 1 pczpre PAA0PpCntA=supn0|PnA<
6 5 3adant3 PAA0BB0PpCntA=supn0|PnA<
7 2 pczpre PBB0PpCntB=supn0|PnB<
8 7 3adant2 PAA0BB0PpCntB=supn0|PnB<
9 6 8 oveq12d PAA0BB0PpCntA+PpCntB=supn0|PnA<+supn0|PnB<
10 zmulcl ABAB
11 10 ad2ant2r AA0BB0AB
12 zcn AA
13 12 anim1i AA0AA0
14 zcn BB
15 14 anim1i BB0BB0
16 mulne0 AA0BB0AB0
17 13 15 16 syl2an AA0BB0AB0
18 11 17 jca AA0BB0ABAB0
19 3 pczpre PABAB0PpCntAB=supn0|PnAB<
20 18 19 sylan2 PAA0BB0PpCntAB=supn0|PnAB<
21 20 3impb PAA0BB0PpCntAB=supn0|PnAB<
22 4 9 21 3eqtr4rd PAA0BB0PpCntAB=PpCntA+PpCntB