Metamath Proof Explorer


Theorem pcpremul

Description: Multiplicative property of the prime count pre-function. Note that the primality of P is essential for this property; ( 4 pCnt 2 ) = 0 but ( 4 pCnt ( 2 x. 2 ) ) = 1 =/= 2 x. ( 4 pCnt 2 ) = 0 . Since this is needed to show uniqueness for the real prime count function (over QQ ), we don't bother to define it off the primes. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Hypotheses pcpremul.1 S = sup n 0 | P n M <
pcpremul.2 T = sup n 0 | P n N <
pcpremul.3 U = sup n 0 | P n M N <
Assertion pcpremul P M M 0 N N 0 S + T = U

Proof

Step Hyp Ref Expression
1 pcpremul.1 S = sup n 0 | P n M <
2 pcpremul.2 T = sup n 0 | P n N <
3 pcpremul.3 U = sup n 0 | P n M N <
4 prmuz2 P P 2
5 4 3ad2ant1 P M M 0 N N 0 P 2
6 zmulcl M N M N
7 6 ad2ant2r M M 0 N N 0 M N
8 7 3adant1 P M M 0 N N 0 M N
9 zcn M M
10 9 anim1i M M 0 M M 0
11 zcn N N
12 11 anim1i N N 0 N N 0
13 mulne0 M M 0 N N 0 M N 0
14 10 12 13 syl2an M M 0 N N 0 M N 0
15 14 3adant1 P M M 0 N N 0 M N 0
16 eqid n 0 | P n M N = n 0 | P n M N
17 16 pclem P 2 M N M N 0 n 0 | P n M N n 0 | P n M N x y n 0 | P n M N y x
18 5 8 15 17 syl12anc P M M 0 N N 0 n 0 | P n M N n 0 | P n M N x y n 0 | P n M N y x
19 18 simp1d P M M 0 N N 0 n 0 | P n M N
20 18 simp3d P M M 0 N N 0 x y n 0 | P n M N y x
21 oveq2 x = S + T P x = P S + T
22 21 breq1d x = S + T P x M N P S + T M N
23 simp2l P M M 0 N N 0 M
24 simp2r P M M 0 N N 0 M 0
25 eqid n 0 | P n M = n 0 | P n M
26 25 1 pcprecl P 2 M M 0 S 0 P S M
27 5 23 24 26 syl12anc P M M 0 N N 0 S 0 P S M
28 27 simpld P M M 0 N N 0 S 0
29 simp3l P M M 0 N N 0 N
30 simp3r P M M 0 N N 0 N 0
31 eqid n 0 | P n N = n 0 | P n N
32 31 2 pcprecl P 2 N N 0 T 0 P T N
33 5 29 30 32 syl12anc P M M 0 N N 0 T 0 P T N
34 33 simpld P M M 0 N N 0 T 0
35 28 34 nn0addcld P M M 0 N N 0 S + T 0
36 prmnn P P
37 36 3ad2ant1 P M M 0 N N 0 P
38 37 35 nnexpcld P M M 0 N N 0 P S + T
39 38 nnzd P M M 0 N N 0 P S + T
40 37 34 nnexpcld P M M 0 N N 0 P T
41 40 nnzd P M M 0 N N 0 P T
42 23 41 zmulcld P M M 0 N N 0 M P T
43 37 nncnd P M M 0 N N 0 P
44 43 34 28 expaddd P M M 0 N N 0 P S + T = P S P T
45 27 simprd P M M 0 N N 0 P S M
46 37 28 nnexpcld P M M 0 N N 0 P S
47 46 nnzd P M M 0 N N 0 P S
48 dvdsmulc P S M P T P S M P S P T M P T
49 47 23 41 48 syl3anc P M M 0 N N 0 P S M P S P T M P T
50 45 49 mpd P M M 0 N N 0 P S P T M P T
51 44 50 eqbrtrd P M M 0 N N 0 P S + T M P T
52 33 simprd P M M 0 N N 0 P T N
53 dvdscmul P T N M P T N M P T M N
54 41 29 23 53 syl3anc P M M 0 N N 0 P T N M P T M N
55 52 54 mpd P M M 0 N N 0 M P T M N
56 39 42 8 51 55 dvdstrd P M M 0 N N 0 P S + T M N
57 22 35 56 elrabd P M M 0 N N 0 S + T x 0 | P x M N
58 oveq2 x = n P x = P n
59 58 breq1d x = n P x M N P n M N
60 59 cbvrabv x 0 | P x M N = n 0 | P n M N
61 57 60 eleqtrdi P M M 0 N N 0 S + T n 0 | P n M N
62 suprzub n 0 | P n M N x y n 0 | P n M N y x S + T n 0 | P n M N S + T sup n 0 | P n M N <
63 19 20 61 62 syl3anc P M M 0 N N 0 S + T sup n 0 | P n M N <
64 63 3 breqtrrdi P M M 0 N N 0 S + T U
65 25 1 pcprendvds2 P 2 M M 0 ¬ P M P S
66 5 23 24 65 syl12anc P M M 0 N N 0 ¬ P M P S
67 31 2 pcprendvds2 P 2 N N 0 ¬ P N P T
68 5 29 30 67 syl12anc P M M 0 N N 0 ¬ P N P T
69 ioran ¬ P M P S P N P T ¬ P M P S ¬ P N P T
70 66 68 69 sylanbrc P M M 0 N N 0 ¬ P M P S P N P T
71 simp1 P M M 0 N N 0 P
72 46 nnne0d P M M 0 N N 0 P S 0
73 dvdsval2 P S P S 0 M P S M M P S
74 47 72 23 73 syl3anc P M M 0 N N 0 P S M M P S
75 45 74 mpbid P M M 0 N N 0 M P S
76 40 nnne0d P M M 0 N N 0 P T 0
77 dvdsval2 P T P T 0 N P T N N P T
78 41 76 29 77 syl3anc P M M 0 N N 0 P T N N P T
79 52 78 mpbid P M M 0 N N 0 N P T
80 euclemma P M P S N P T P M P S N P T P M P S P N P T
81 71 75 79 80 syl3anc P M M 0 N N 0 P M P S N P T P M P S P N P T
82 70 81 mtbird P M M 0 N N 0 ¬ P M P S N P T
83 16 3 pcprecl P 2 M N M N 0 U 0 P U M N
84 5 8 15 83 syl12anc P M M 0 N N 0 U 0 P U M N
85 84 simpld P M M 0 N N 0 U 0
86 nn0ltp1le S + T 0 U 0 S + T < U S + T + 1 U
87 35 85 86 syl2anc P M M 0 N N 0 S + T < U S + T + 1 U
88 37 nnzd P M M 0 N N 0 P
89 peano2nn0 S + T 0 S + T + 1 0
90 35 89 syl P M M 0 N N 0 S + T + 1 0
91 dvdsexp P S + T + 1 0 U S + T + 1 P S + T + 1 P U
92 91 3expia P S + T + 1 0 U S + T + 1 P S + T + 1 P U
93 88 90 92 syl2anc P M M 0 N N 0 U S + T + 1 P S + T + 1 P U
94 84 simprd P M M 0 N N 0 P U M N
95 37 90 nnexpcld P M M 0 N N 0 P S + T + 1
96 95 nnzd P M M 0 N N 0 P S + T + 1
97 37 85 nnexpcld P M M 0 N N 0 P U
98 97 nnzd P M M 0 N N 0 P U
99 dvdstr P S + T + 1 P U M N P S + T + 1 P U P U M N P S + T + 1 M N
100 96 98 8 99 syl3anc P M M 0 N N 0 P S + T + 1 P U P U M N P S + T + 1 M N
101 94 100 mpan2d P M M 0 N N 0 P S + T + 1 P U P S + T + 1 M N
102 93 101 syld P M M 0 N N 0 U S + T + 1 P S + T + 1 M N
103 90 nn0zd P M M 0 N N 0 S + T + 1
104 85 nn0zd P M M 0 N N 0 U
105 eluz S + T + 1 U U S + T + 1 S + T + 1 U
106 103 104 105 syl2anc P M M 0 N N 0 U S + T + 1 S + T + 1 U
107 43 35 expp1d P M M 0 N N 0 P S + T + 1 = P S + T P
108 23 zcnd P M M 0 N N 0 M
109 29 zcnd P M M 0 N N 0 N
110 108 109 mulcld P M M 0 N N 0 M N
111 38 nncnd P M M 0 N N 0 P S + T
112 38 nnne0d P M M 0 N N 0 P S + T 0
113 110 111 112 divcan2d P M M 0 N N 0 P S + T M N P S + T = M N
114 44 oveq2d P M M 0 N N 0 M N P S + T = M N P S P T
115 46 nncnd P M M 0 N N 0 P S
116 40 nncnd P M M 0 N N 0 P T
117 108 115 109 116 72 76 divmuldivd P M M 0 N N 0 M P S N P T = M N P S P T
118 114 117 eqtr4d P M M 0 N N 0 M N P S + T = M P S N P T
119 118 oveq2d P M M 0 N N 0 P S + T M N P S + T = P S + T M P S N P T
120 113 119 eqtr3d P M M 0 N N 0 M N = P S + T M P S N P T
121 107 120 breq12d P M M 0 N N 0 P S + T + 1 M N P S + T P P S + T M P S N P T
122 75 79 zmulcld P M M 0 N N 0 M P S N P T
123 dvdscmulr P M P S N P T P S + T P S + T 0 P S + T P P S + T M P S N P T P M P S N P T
124 88 122 39 112 123 syl112anc P M M 0 N N 0 P S + T P P S + T M P S N P T P M P S N P T
125 121 124 bitrd P M M 0 N N 0 P S + T + 1 M N P M P S N P T
126 102 106 125 3imtr3d P M M 0 N N 0 S + T + 1 U P M P S N P T
127 87 126 sylbid P M M 0 N N 0 S + T < U P M P S N P T
128 82 127 mtod P M M 0 N N 0 ¬ S + T < U
129 35 nn0red P M M 0 N N 0 S + T
130 85 nn0red P M M 0 N N 0 U
131 129 130 eqleltd P M M 0 N N 0 S + T = U S + T U ¬ S + T < U
132 64 128 131 mpbir2and P M M 0 N N 0 S + T = U