Metamath Proof Explorer


Theorem pconncn

Description: The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Hypothesis ispconn.1 X=J
Assertion pconncn JPConnAXBXfIICnJf0=Af1=B

Proof

Step Hyp Ref Expression
1 ispconn.1 X=J
2 1 ispconn JPConnJTopxXyXfIICnJf0=xf1=y
3 2 simprbi JPConnxXyXfIICnJf0=xf1=y
4 eqeq2 x=Af0=xf0=A
5 4 anbi1d x=Af0=xf1=yf0=Af1=y
6 5 rexbidv x=AfIICnJf0=xf1=yfIICnJf0=Af1=y
7 eqeq2 y=Bf1=yf1=B
8 7 anbi2d y=Bf0=Af1=yf0=Af1=B
9 8 rexbidv y=BfIICnJf0=Af1=yfIICnJf0=Af1=B
10 6 9 rspc2v AXBXxXyXfIICnJf0=xf1=yfIICnJf0=Af1=B
11 3 10 syl5com JPConnAXBXfIICnJf0=Af1=B
12 11 3impib JPConnAXBXfIICnJf0=Af1=B