Metamath Proof Explorer


Theorem pcprecl

Description: Closure of the prime power pre-function. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Hypotheses pclem.1 A=n0|PnN
pclem.2 S=supA<
Assertion pcprecl P2NN0S0PSN

Proof

Step Hyp Ref Expression
1 pclem.1 A=n0|PnN
2 pclem.2 S=supA<
3 1 pclem P2NN0AAyzAzy
4 suprzcl2 AAyzAzysupA<A
5 3 4 syl P2NN0supA<A
6 2 5 eqeltrid P2NN0SA
7 oveq2 x=SPx=PS
8 7 breq1d x=SPxNPSN
9 oveq2 n=xPn=Px
10 9 breq1d n=xPnNPxN
11 10 cbvrabv n0|PnN=x0|PxN
12 1 11 eqtri A=x0|PxN
13 8 12 elrab2 SAS0PSN
14 6 13 sylib P2NN0S0PSN