Metamath Proof Explorer


Theorem pcqdiv

Description: Division property of the prime power function. (Contributed by Mario Carneiro, 10-Aug-2015)

Ref Expression
Assertion pcqdiv P A A 0 B B 0 P pCnt A B = P pCnt A P pCnt B

Proof

Step Hyp Ref Expression
1 simp2l P A A 0 B B 0 A
2 qcn A A
3 1 2 syl P A A 0 B B 0 A
4 simp3l P A A 0 B B 0 B
5 qcn B B
6 4 5 syl P A A 0 B B 0 B
7 simp3r P A A 0 B B 0 B 0
8 3 6 7 divcan1d P A A 0 B B 0 A B B = A
9 8 oveq2d P A A 0 B B 0 P pCnt A B B = P pCnt A
10 simp1 P A A 0 B B 0 P
11 qdivcl A B B 0 A B
12 1 4 7 11 syl3anc P A A 0 B B 0 A B
13 simp2r P A A 0 B B 0 A 0
14 3 6 13 7 divne0d P A A 0 B B 0 A B 0
15 pcqmul P A B A B 0 B B 0 P pCnt A B B = P pCnt A B + P pCnt B
16 10 12 14 4 7 15 syl122anc P A A 0 B B 0 P pCnt A B B = P pCnt A B + P pCnt B
17 9 16 eqtr3d P A A 0 B B 0 P pCnt A = P pCnt A B + P pCnt B
18 17 oveq1d P A A 0 B B 0 P pCnt A P pCnt B = P pCnt A B + P pCnt B - P pCnt B
19 pcqcl P A B A B 0 P pCnt A B
20 10 12 14 19 syl12anc P A A 0 B B 0 P pCnt A B
21 20 zcnd P A A 0 B B 0 P pCnt A B
22 pcqcl P B B 0 P pCnt B
23 22 3adant2 P A A 0 B B 0 P pCnt B
24 23 zcnd P A A 0 B B 0 P pCnt B
25 21 24 pncand P A A 0 B B 0 P pCnt A B + P pCnt B - P pCnt B = P pCnt A B
26 18 25 eqtr2d P A A 0 B B 0 P pCnt A B = P pCnt A P pCnt B