Metamath Proof Explorer


Theorem pell14qrmulcl

Description: Positive Pell solutions are closed under multiplication. (Contributed by Stefan O'Rear, 17-Sep-2014)

Ref Expression
Assertion pell14qrmulcl DAPell14QRDBPell14QRDABPell14QRD

Proof

Step Hyp Ref Expression
1 simpl DAPell1234QRD0<ABPell1234QRD0<BD
2 simprll DAPell1234QRD0<ABPell1234QRD0<BAPell1234QRD
3 simprrl DAPell1234QRD0<ABPell1234QRD0<BBPell1234QRD
4 pell1234qrmulcl DAPell1234QRDBPell1234QRDABPell1234QRD
5 1 2 3 4 syl3anc DAPell1234QRD0<ABPell1234QRD0<BABPell1234QRD
6 pell1234qrre DAPell1234QRDA
7 2 6 syldan DAPell1234QRD0<ABPell1234QRD0<BA
8 pell1234qrre DBPell1234QRDB
9 3 8 syldan DAPell1234QRD0<ABPell1234QRD0<BB
10 simprlr DAPell1234QRD0<ABPell1234QRD0<B0<A
11 simprrr DAPell1234QRD0<ABPell1234QRD0<B0<B
12 7 9 10 11 mulgt0d DAPell1234QRD0<ABPell1234QRD0<B0<AB
13 5 12 jca DAPell1234QRD0<ABPell1234QRD0<BABPell1234QRD0<AB
14 13 ex DAPell1234QRD0<ABPell1234QRD0<BABPell1234QRD0<AB
15 elpell14qr2 DAPell14QRDAPell1234QRD0<A
16 elpell14qr2 DBPell14QRDBPell1234QRD0<B
17 15 16 anbi12d DAPell14QRDBPell14QRDAPell1234QRD0<ABPell1234QRD0<B
18 elpell14qr2 DABPell14QRDABPell1234QRD0<AB
19 14 17 18 3imtr4d DAPell14QRDBPell14QRDABPell14QRD
20 19 3impib DAPell14QRDBPell14QRDABPell14QRD