Metamath Proof Explorer


Theorem pf1subrg

Description: Polynomial functions are a subring. (Contributed by Mario Carneiro, 19-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Hypotheses pf1const.b B=BaseR
pf1const.q Q=raneval1R
Assertion pf1subrg RCRingQSubRingR𝑠B

Proof

Step Hyp Ref Expression
1 pf1const.b B=BaseR
2 pf1const.q Q=raneval1R
3 eqid eval1R=eval1R
4 eqid Poly1R=Poly1R
5 eqid R𝑠B=R𝑠B
6 3 4 5 1 evl1rhm RCRingeval1RPoly1RRingHomR𝑠B
7 eqid BasePoly1R=BasePoly1R
8 eqid BaseR𝑠B=BaseR𝑠B
9 7 8 rhmf eval1RPoly1RRingHomR𝑠Beval1R:BasePoly1RBaseR𝑠B
10 ffn eval1R:BasePoly1RBaseR𝑠Beval1RFnBasePoly1R
11 fnima eval1RFnBasePoly1Reval1RBasePoly1R=raneval1R
12 6 9 10 11 4syl RCRingeval1RBasePoly1R=raneval1R
13 12 2 eqtr4di RCRingeval1RBasePoly1R=Q
14 4 ply1assa RCRingPoly1RAssAlg
15 assaring Poly1RAssAlgPoly1RRing
16 7 subrgid Poly1RRingBasePoly1RSubRingPoly1R
17 14 15 16 3syl RCRingBasePoly1RSubRingPoly1R
18 rhmima eval1RPoly1RRingHomR𝑠BBasePoly1RSubRingPoly1Reval1RBasePoly1RSubRingR𝑠B
19 6 17 18 syl2anc RCRingeval1RBasePoly1RSubRingR𝑠B
20 13 19 eqeltrrd RCRingQSubRingR𝑠B