Metamath Proof Explorer


Theorem pfxnd0

Description: The value of a prefix operation for a length argument not in the range of the word length is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv ). (Contributed by AV, 3-Dec-2022)

Ref Expression
Assertion pfxnd0 WWordVL0WWprefixL=

Proof

Step Hyp Ref Expression
1 df-nel L0W¬L0W
2 1 a1i WWordVL0W¬L0W
3 elfz2nn0 L0WL0W0LW
4 3 a1i WWordVL0WL0W0LW
5 4 notbid WWordV¬L0W¬L0W0LW
6 3ianor ¬L0W0LW¬L0¬W0¬LW
7 6 a1i WWordV¬L0W0LW¬L0¬W0¬LW
8 2 5 7 3bitrd WWordVL0W¬L0¬W0¬LW
9 3orrot ¬L0¬W0¬LW¬W0¬LW¬L0
10 3orass ¬W0¬LW¬L0¬W0¬LW¬L0
11 lencl WWordVW0
12 11 pm2.24d WWordV¬W0WprefixL=
13 12 com12 ¬W0WWordVWprefixL=
14 simpr WVL0L0
15 pfxnndmnd ¬WVL0WprefixL=
16 14 15 nsyl5 ¬L0WprefixL=
17 16 a1d ¬L0WWordVWprefixL=
18 notnotb L0¬¬L0
19 11 nn0red WWordVW
20 nn0re L0L
21 ltnle WLW<L¬LW
22 19 20 21 syl2an WWordVL0W<L¬LW
23 pfxnd WWordVL0W<LWprefixL=
24 23 3expia WWordVL0W<LWprefixL=
25 22 24 sylbird WWordVL0¬LWWprefixL=
26 25 expcom L0WWordV¬LWWprefixL=
27 26 com23 L0¬LWWWordVWprefixL=
28 18 27 sylbir ¬¬L0¬LWWWordVWprefixL=
29 28 imp ¬¬L0¬LWWWordVWprefixL=
30 17 29 jaoi3 ¬L0¬LWWWordVWprefixL=
31 30 orcoms ¬LW¬L0WWordVWprefixL=
32 13 31 jaoi ¬W0¬LW¬L0WWordVWprefixL=
33 10 32 sylbi ¬W0¬LW¬L0WWordVWprefixL=
34 9 33 sylbi ¬L0¬W0¬LWWWordVWprefixL=
35 34 com12 WWordV¬L0¬W0¬LWWprefixL=
36 8 35 sylbid WWordVL0WWprefixL=
37 36 imp WWordVL0WWprefixL=