Metamath Proof Explorer


Theorem phop

Description: A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypotheses phop.2 G=+vU
phop.4 S=𝑠OLDU
phop.6 N=normCVU
Assertion phop UCPreHilOLDU=GSN

Proof

Step Hyp Ref Expression
1 phop.2 G=+vU
2 phop.4 S=𝑠OLDU
3 phop.6 N=normCVU
4 phrel RelCPreHilOLD
5 1st2nd RelCPreHilOLDUCPreHilOLDU=1stU2ndU
6 4 5 mpan UCPreHilOLDU=1stU2ndU
7 3 nmcvfval N=2ndU
8 7 opeq2i 1stUN=1stU2ndU
9 phnv UCPreHilOLDUNrmCVec
10 eqid 1stU=1stU
11 10 nvvc UNrmCVec1stUCVecOLD
12 vcrel RelCVecOLD
13 1st2nd RelCVecOLD1stUCVecOLD1stU=1st1stU2nd1stU
14 12 13 mpan 1stUCVecOLD1stU=1st1stU2nd1stU
15 1 vafval G=1st1stU
16 2 smfval S=2nd1stU
17 15 16 opeq12i GS=1st1stU2nd1stU
18 14 17 eqtr4di 1stUCVecOLD1stU=GS
19 9 11 18 3syl UCPreHilOLD1stU=GS
20 19 opeq1d UCPreHilOLD1stUN=GSN
21 8 20 eqtr3id UCPreHilOLD1stU2ndU=GSN
22 6 21 eqtrd UCPreHilOLDU=GSN