Metamath Proof Explorer


Theorem phpeqdOLD

Description: Obsolete version of phpeqd as of 28-Nov-2024. (Contributed by Rohan Ridenour, 3-Aug-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses phpeqdOLD.1 φAFin
phpeqdOLD.2 φBA
phpeqdOLD.3 φAB
Assertion phpeqdOLD φA=B

Proof

Step Hyp Ref Expression
1 phpeqdOLD.1 φAFin
2 phpeqdOLD.2 φBA
3 phpeqdOLD.3 φAB
4 2 adantr φ¬A=BBA
5 simpr φ¬A=B¬A=B
6 5 neqcomd φ¬A=B¬B=A
7 dfpss2 BABA¬B=A
8 4 6 7 sylanbrc φ¬A=BBA
9 php3 AFinBABA
10 1 8 9 syl2an2r φ¬A=BBA
11 sdomnen BA¬BA
12 ensym ABBA
13 11 12 nsyl BA¬AB
14 10 13 syl φ¬A=B¬AB
15 14 ex φ¬A=B¬AB
16 3 15 mt4d φA=B