Metamath Proof Explorer


Theorem phplem4

Description: Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Hypotheses phplem2.1 A V
phplem2.2 B V
Assertion phplem4 A ω B ω suc A suc B A B

Proof

Step Hyp Ref Expression
1 phplem2.1 A V
2 phplem2.2 B V
3 bren suc A suc B f f : suc A 1-1 onto suc B
4 f1of1 f : suc A 1-1 onto suc B f : suc A 1-1 suc B
5 4 adantl A ω f : suc A 1-1 onto suc B f : suc A 1-1 suc B
6 2 sucex suc B V
7 sssucid A suc A
8 f1imaen2g f : suc A 1-1 suc B suc B V A suc A A V f A A
9 7 1 8 mpanr12 f : suc A 1-1 suc B suc B V f A A
10 5 6 9 sylancl A ω f : suc A 1-1 onto suc B f A A
11 10 ensymd A ω f : suc A 1-1 onto suc B A f A
12 nnord A ω Ord A
13 orddif Ord A A = suc A A
14 12 13 syl A ω A = suc A A
15 14 imaeq2d A ω f A = f suc A A
16 f1ofn f : suc A 1-1 onto suc B f Fn suc A
17 1 sucid A suc A
18 fnsnfv f Fn suc A A suc A f A = f A
19 16 17 18 sylancl f : suc A 1-1 onto suc B f A = f A
20 19 difeq2d f : suc A 1-1 onto suc B f suc A f A = f suc A f A
21 imadmrn f dom f = ran f
22 21 eqcomi ran f = f dom f
23 f1ofo f : suc A 1-1 onto suc B f : suc A onto suc B
24 forn f : suc A onto suc B ran f = suc B
25 23 24 syl f : suc A 1-1 onto suc B ran f = suc B
26 f1odm f : suc A 1-1 onto suc B dom f = suc A
27 26 imaeq2d f : suc A 1-1 onto suc B f dom f = f suc A
28 22 25 27 3eqtr3a f : suc A 1-1 onto suc B suc B = f suc A
29 28 difeq1d f : suc A 1-1 onto suc B suc B f A = f suc A f A
30 dff1o3 f : suc A 1-1 onto suc B f : suc A onto suc B Fun f -1
31 imadif Fun f -1 f suc A A = f suc A f A
32 30 31 simplbiim f : suc A 1-1 onto suc B f suc A A = f suc A f A
33 20 29 32 3eqtr4rd f : suc A 1-1 onto suc B f suc A A = suc B f A
34 15 33 sylan9eq A ω f : suc A 1-1 onto suc B f A = suc B f A
35 11 34 breqtrd A ω f : suc A 1-1 onto suc B A suc B f A
36 fnfvelrn f Fn suc A A suc A f A ran f
37 16 17 36 sylancl f : suc A 1-1 onto suc B f A ran f
38 24 eleq2d f : suc A onto suc B f A ran f f A suc B
39 23 38 syl f : suc A 1-1 onto suc B f A ran f f A suc B
40 37 39 mpbid f : suc A 1-1 onto suc B f A suc B
41 fvex f A V
42 2 41 phplem3 B ω f A suc B B suc B f A
43 40 42 sylan2 B ω f : suc A 1-1 onto suc B B suc B f A
44 43 ensymd B ω f : suc A 1-1 onto suc B suc B f A B
45 entr A suc B f A suc B f A B A B
46 35 44 45 syl2an A ω f : suc A 1-1 onto suc B B ω f : suc A 1-1 onto suc B A B
47 46 anandirs A ω B ω f : suc A 1-1 onto suc B A B
48 47 ex A ω B ω f : suc A 1-1 onto suc B A B
49 48 exlimdv A ω B ω f f : suc A 1-1 onto suc B A B
50 3 49 syl5bi A ω B ω suc A suc B A B