Metamath Proof Explorer


Theorem phtpcco2

Description: Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 6-Jul-2015)

Ref Expression
Hypotheses phtpcco2.f φ F ph J G
phtpcco2.p φ P J Cn K
Assertion phtpcco2 φ P F ph K P G

Proof

Step Hyp Ref Expression
1 phtpcco2.f φ F ph J G
2 phtpcco2.p φ P J Cn K
3 isphtpc F ph J G F II Cn J G II Cn J F PHtpy J G
4 1 3 sylib φ F II Cn J G II Cn J F PHtpy J G
5 4 simp1d φ F II Cn J
6 cnco F II Cn J P J Cn K P F II Cn K
7 5 2 6 syl2anc φ P F II Cn K
8 4 simp2d φ G II Cn J
9 cnco G II Cn J P J Cn K P G II Cn K
10 8 2 9 syl2anc φ P G II Cn K
11 4 simp3d φ F PHtpy J G
12 n0 F PHtpy J G f f F PHtpy J G
13 11 12 sylib φ f f F PHtpy J G
14 5 adantr φ f F PHtpy J G F II Cn J
15 8 adantr φ f F PHtpy J G G II Cn J
16 2 adantr φ f F PHtpy J G P J Cn K
17 simpr φ f F PHtpy J G f F PHtpy J G
18 14 15 16 17 phtpyco2 φ f F PHtpy J G P f P F PHtpy K P G
19 18 ne0d φ f F PHtpy J G P F PHtpy K P G
20 13 19 exlimddv φ P F PHtpy K P G
21 isphtpc P F ph K P G P F II Cn K P G II Cn K P F PHtpy K P G
22 7 10 20 21 syl3anbrc φ P F ph K P G