Metamath Proof Explorer


Theorem pimltpnf2f

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses pimltpnf2f.1 _xF
pimltpnf2f.2 _xA
pimltpnf2f.3 φF:A
Assertion pimltpnf2f φxA|Fx<+∞=A

Proof

Step Hyp Ref Expression
1 pimltpnf2f.1 _xF
2 pimltpnf2f.2 _xA
3 pimltpnf2f.3 φF:A
4 nfcv _yA
5 nfv yFx<+∞
6 nfcv _xy
7 1 6 nffv _xFy
8 nfcv _x<
9 nfcv _x+∞
10 7 8 9 nfbr xFy<+∞
11 fveq2 x=yFx=Fy
12 11 breq1d x=yFx<+∞Fy<+∞
13 2 4 5 10 12 cbvrabw xA|Fx<+∞=yA|Fy<+∞
14 nfv yφ
15 3 ffvelcdmda φyAFy
16 14 15 pimltpnf φyA|Fy<+∞=A
17 13 16 eqtrid φxA|Fx<+∞=A