Metamath Proof Explorer


Theorem pimltpnf2f

Description: Given a real-valued function, the preimage of an open interval, unbounded below, with upper bound +oo , is the whole domain. (Contributed by Glauco Siliprandi, 15-Dec-2024)

Ref Expression
Hypotheses pimltpnf2f.1 _ x F
pimltpnf2f.2 _ x A
pimltpnf2f.3 φ F : A
Assertion pimltpnf2f φ x A | F x < +∞ = A

Proof

Step Hyp Ref Expression
1 pimltpnf2f.1 _ x F
2 pimltpnf2f.2 _ x A
3 pimltpnf2f.3 φ F : A
4 nfcv _ y A
5 nfv y F x < +∞
6 nfcv _ x y
7 1 6 nffv _ x F y
8 nfcv _ x <
9 nfcv _ x +∞
10 7 8 9 nfbr x F y < +∞
11 fveq2 x = y F x = F y
12 11 breq1d x = y F x < +∞ F y < +∞
13 2 4 5 10 12 cbvrabw x A | F x < +∞ = y A | F y < +∞
14 nfv y φ
15 3 ffvelcdmda φ y A F y
16 14 15 pimltpnf φ y A | F y < +∞ = A
17 13 16 eqtrid φ x A | F x < +∞ = A