Metamath Proof Explorer


Theorem pjbdlni

Description: A projector is a bounded linear operator. (Contributed by NM, 3-Jun-2006) (New usage is discouraged.)

Ref Expression
Hypothesis pjhmop.1 H C
Assertion pjbdlni proj H BndLinOp

Proof

Step Hyp Ref Expression
1 pjhmop.1 H C
2 1 pjlnopi proj H LinOp
3 2fveq3 H = 0 norm op proj H = norm op proj 0
4 3 eleq1d H = 0 norm op proj H norm op proj 0
5 1 pjnmopi H 0 norm op proj H = 1
6 1re 1
7 5 6 eqeltrdi H 0 norm op proj H
8 7 adantl H C H 0 norm op proj H
9 df-h0op 0 hop = proj 0
10 9 fveq2i norm op 0 hop = norm op proj 0
11 nmop0 norm op 0 hop = 0
12 10 11 eqtr3i norm op proj 0 = 0
13 0re 0
14 12 13 eqeltri norm op proj 0
15 14 a1i H C norm op proj 0
16 4 8 15 pm2.61ne H C norm op proj H
17 1 16 ax-mp norm op proj H
18 elbdop2 proj H BndLinOp proj H LinOp norm op proj H
19 2 17 18 mpbir2an proj H BndLinOp