Metamath Proof Explorer


Theorem pjcss

Description: A projection subspace is an (algebraically) closed subspace. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses pjcss.k K=projW
pjcss.c C=ClSubSpW
Assertion pjcss WPreHildomKC

Proof

Step Hyp Ref Expression
1 pjcss.k K=projW
2 pjcss.c C=ClSubSpW
3 eqid BaseW=BaseW
4 eqid ocvW=ocvW
5 eqid LSSumW=LSSumW
6 simpl WPreHilxdomKWPreHil
7 eqid LSubSpW=LSubSpW
8 3 7 4 5 1 pjdm2 WPreHilxdomKxLSubSpWxLSSumWocvWx=BaseW
9 8 simprbda WPreHilxdomKxLSubSpW
10 3 7 lssss xLSubSpWxBaseW
11 9 10 syl WPreHilxdomKxBaseW
12 3 4 ocvss ocvWocvWxBaseW
13 8 simplbda WPreHilxdomKxLSSumWocvWx=BaseW
14 12 13 sseqtrrid WPreHilxdomKocvWocvWxxLSSumWocvWx
15 2 3 4 5 6 11 14 lsmcss WPreHilxdomKxC
16 15 ex WPreHilxdomKxC
17 16 ssrdv WPreHildomKC