Metamath Proof Explorer


Theorem pjneli

Description: If a vector does not belong to subspace, the norm of its projection is less than its norm. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjnorm.1 HC
pjnorm.2 A
Assertion pjneli ¬AHnormprojHA<normA

Proof

Step Hyp Ref Expression
1 pjnorm.1 HC
2 pjnorm.2 A
3 1 2 pjnormi normprojHAnormA
4 3 biantrur normAnormprojHAnormprojHAnormAnormAnormprojHA
5 1 2 pjoc1i AHprojHA=0
6 1 2 pjpythi normA2=normprojHA2+normprojHA2
7 sq0 02=0
8 7 oveq2i normprojHA2+02=normprojHA2+0
9 1 2 pjhclii projHA
10 9 normcli normprojHA
11 10 resqcli normprojHA2
12 11 recni normprojHA2
13 12 addridi normprojHA2+0=normprojHA2
14 8 13 eqtr2i normprojHA2=normprojHA2+02
15 6 14 eqeq12i normA2=normprojHA2normprojHA2+normprojHA2=normprojHA2+02
16 1 choccli HC
17 16 2 pjhclii projHA
18 17 normcli normprojHA
19 18 resqcli normprojHA2
20 19 recni normprojHA2
21 0cn 0
22 21 sqcli 02
23 12 20 22 addcani normprojHA2+normprojHA2=normprojHA2+02normprojHA2=02
24 normge0 projHA0normprojHA
25 17 24 ax-mp 0normprojHA
26 0le0 00
27 0re 0
28 18 27 sq11i 0normprojHA00normprojHA2=02normprojHA=0
29 25 26 28 mp2an normprojHA2=02normprojHA=0
30 17 norm-i-i normprojHA=0projHA=0
31 23 29 30 3bitri normprojHA2+normprojHA2=normprojHA2+02projHA=0
32 15 31 bitr2i projHA=0normA2=normprojHA2
33 normge0 A0normA
34 2 33 ax-mp 0normA
35 normge0 projHA0normprojHA
36 9 35 ax-mp 0normprojHA
37 2 normcli normA
38 37 10 sq11i 0normA0normprojHAnormA2=normprojHA2normA=normprojHA
39 34 36 38 mp2an normA2=normprojHA2normA=normprojHA
40 5 32 39 3bitri AHnormA=normprojHA
41 40 necon3bbii ¬AHnormAnormprojHA
42 10 37 ltleni normprojHA<normAnormprojHAnormAnormAnormprojHA
43 4 41 42 3bitr4i ¬AHnormprojHA<normA