Metamath Proof Explorer


Theorem pjpjpre

Description: Decomposition of a vector into projections. This formulation of axpjpj avoids pjhth . (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses pjpjpre.1 φHC
pjpjpre.2 φAH+H
Assertion pjpjpre φA=projHA+projHA

Proof

Step Hyp Ref Expression
1 pjpjpre.1 φHC
2 pjpjpre.2 φAH+H
3 chsh HCHS
4 1 3 syl φHS
5 shocsh HSHS
6 4 5 syl φHS
7 shsel HSHSAH+HxHyHA=x+y
8 4 6 7 syl2anc φAH+HxHyHA=x+y
9 2 8 mpbid φxHyHA=x+y
10 simprr φxHyHA=x+yA=x+y
11 simprll φxHyHA=x+yxH
12 simprlr φxHyHA=x+yyH
13 rspe yHA=x+yyHA=x+y
14 12 10 13 syl2anc φxHyHA=x+yyHA=x+y
15 pjpreeq HCAH+HprojHA=xxHyHA=x+y
16 1 2 15 syl2anc φprojHA=xxHyHA=x+y
17 16 adantr φxHyHA=x+yprojHA=xxHyHA=x+y
18 11 14 17 mpbir2and φxHyHA=x+yprojHA=x
19 shococss HSHH
20 4 19 syl φHH
21 20 adantr φxHyHA=x+yHH
22 21 11 sseldd φxHyHA=x+yxH
23 1 adantr φxHyHA=x+yHC
24 23 3 syl φxHyHA=x+yHS
25 shel HSxHx
26 24 11 25 syl2anc φxHyHA=x+yx
27 24 5 syl φxHyHA=x+yHS
28 shel HSyHy
29 27 12 28 syl2anc φxHyHA=x+yy
30 ax-hvcom xyx+y=y+x
31 26 29 30 syl2anc φxHyHA=x+yx+y=y+x
32 10 31 eqtrd φxHyHA=x+yA=y+x
33 rspe xHA=y+xxHA=y+x
34 22 32 33 syl2anc φxHyHA=x+yxHA=y+x
35 choccl HCHC
36 1 35 syl φHC
37 shocsh HSHS
38 6 37 syl φHS
39 shless HSHSHSHHH+HH+H
40 4 38 6 20 39 syl31anc φH+HH+H
41 shscom HSHSH+H=H+H
42 6 38 41 syl2anc φH+H=H+H
43 40 42 sseqtrrd φH+HH+H
44 43 2 sseldd φAH+H
45 pjpreeq HCAH+HprojHA=yyHxHA=y+x
46 36 44 45 syl2anc φprojHA=yyHxHA=y+x
47 46 adantr φxHyHA=x+yprojHA=yyHxHA=y+x
48 12 34 47 mpbir2and φxHyHA=x+yprojHA=y
49 18 48 oveq12d φxHyHA=x+yprojHA+projHA=x+y
50 10 49 eqtr4d φxHyHA=x+yA=projHA+projHA
51 50 exp32 φxHyHA=x+yA=projHA+projHA
52 51 rexlimdvv φxHyHA=x+yA=projHA+projHA
53 9 52 mpd φA=projHA+projHA