| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjpjpre.1 | ⊢ ( 𝜑  →  𝐻  ∈   Cℋ  ) | 
						
							| 2 |  | pjpjpre.2 | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 3 |  | chsh | ⊢ ( 𝐻  ∈   Cℋ   →  𝐻  ∈   Sℋ  ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝜑  →  𝐻  ∈   Sℋ  ) | 
						
							| 5 |  | shocsh | ⊢ ( 𝐻  ∈   Sℋ   →  ( ⊥ ‘ 𝐻 )  ∈   Sℋ  ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝜑  →  ( ⊥ ‘ 𝐻 )  ∈   Sℋ  ) | 
						
							| 7 |  | shsel | ⊢ ( ( 𝐻  ∈   Sℋ   ∧  ( ⊥ ‘ 𝐻 )  ∈   Sℋ  )  →  ( 𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) )  ↔  ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 8 | 4 6 7 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) )  ↔  ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 9 | 2 8 | mpbid | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 10 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 11 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  𝑥  ∈  𝐻 ) | 
						
							| 12 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  𝑦  ∈  ( ⊥ ‘ 𝐻 ) ) | 
						
							| 13 |  | rspe | ⊢ ( ( 𝑦  ∈  ( ⊥ ‘ 𝐻 )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) )  →  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 14 | 12 10 13 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 15 |  | pjpreeq | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) ) )  →  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  =  𝑥  ↔  ( 𝑥  ∈  𝐻  ∧  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) ) | 
						
							| 16 | 1 2 15 | syl2anc | ⊢ ( 𝜑  →  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  =  𝑥  ↔  ( 𝑥  ∈  𝐻  ∧  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  =  𝑥  ↔  ( 𝑥  ∈  𝐻  ∧  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) ) | 
						
							| 18 | 11 14 17 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  =  𝑥 ) | 
						
							| 19 |  | shococss | ⊢ ( 𝐻  ∈   Sℋ   →  𝐻  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 20 | 4 19 | syl | ⊢ ( 𝜑  →  𝐻  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  𝐻  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 22 | 21 11 | sseldd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  𝑥  ∈  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 23 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  𝐻  ∈   Cℋ  ) | 
						
							| 24 | 23 3 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  𝐻  ∈   Sℋ  ) | 
						
							| 25 |  | shel | ⊢ ( ( 𝐻  ∈   Sℋ   ∧  𝑥  ∈  𝐻 )  →  𝑥  ∈   ℋ ) | 
						
							| 26 | 24 11 25 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  𝑥  ∈   ℋ ) | 
						
							| 27 | 24 5 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  ( ⊥ ‘ 𝐻 )  ∈   Sℋ  ) | 
						
							| 28 |  | shel | ⊢ ( ( ( ⊥ ‘ 𝐻 )  ∈   Sℋ   ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  →  𝑦  ∈   ℋ ) | 
						
							| 29 | 27 12 28 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  𝑦  ∈   ℋ ) | 
						
							| 30 |  | ax-hvcom | ⊢ ( ( 𝑥  ∈   ℋ  ∧  𝑦  ∈   ℋ )  →  ( 𝑥  +ℎ  𝑦 )  =  ( 𝑦  +ℎ  𝑥 ) ) | 
						
							| 31 | 26 29 30 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  ( 𝑥  +ℎ  𝑦 )  =  ( 𝑦  +ℎ  𝑥 ) ) | 
						
							| 32 | 10 31 | eqtrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) | 
						
							| 33 |  | rspe | ⊢ ( ( 𝑥  ∈  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑦  +ℎ  𝑥 ) )  →  ∃ 𝑥  ∈  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) | 
						
							| 34 | 22 32 33 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  ∃ 𝑥  ∈  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) | 
						
							| 35 |  | choccl | ⊢ ( 𝐻  ∈   Cℋ   →  ( ⊥ ‘ 𝐻 )  ∈   Cℋ  ) | 
						
							| 36 | 1 35 | syl | ⊢ ( 𝜑  →  ( ⊥ ‘ 𝐻 )  ∈   Cℋ  ) | 
						
							| 37 |  | shocsh | ⊢ ( ( ⊥ ‘ 𝐻 )  ∈   Sℋ   →  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) )  ∈   Sℋ  ) | 
						
							| 38 | 6 37 | syl | ⊢ ( 𝜑  →  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) )  ∈   Sℋ  ) | 
						
							| 39 |  | shless | ⊢ ( ( ( 𝐻  ∈   Sℋ   ∧  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) )  ∈   Sℋ   ∧  ( ⊥ ‘ 𝐻 )  ∈   Sℋ  )  ∧  𝐻  ⊆  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) )  →  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) )  ⊆  ( ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) )  +ℋ  ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 40 | 4 38 6 20 39 | syl31anc | ⊢ ( 𝜑  →  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) )  ⊆  ( ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) )  +ℋ  ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 41 |  | shscom | ⊢ ( ( ( ⊥ ‘ 𝐻 )  ∈   Sℋ   ∧  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) )  ∈   Sℋ  )  →  ( ( ⊥ ‘ 𝐻 )  +ℋ  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) )  =  ( ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) )  +ℋ  ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 42 | 6 38 41 | syl2anc | ⊢ ( 𝜑  →  ( ( ⊥ ‘ 𝐻 )  +ℋ  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) )  =  ( ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) )  +ℋ  ( ⊥ ‘ 𝐻 ) ) ) | 
						
							| 43 | 40 42 | sseqtrrd | ⊢ ( 𝜑  →  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) )  ⊆  ( ( ⊥ ‘ 𝐻 )  +ℋ  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) ) | 
						
							| 44 | 43 2 | sseldd | ⊢ ( 𝜑  →  𝐴  ∈  ( ( ⊥ ‘ 𝐻 )  +ℋ  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) ) | 
						
							| 45 |  | pjpreeq | ⊢ ( ( ( ⊥ ‘ 𝐻 )  ∈   Cℋ   ∧  𝐴  ∈  ( ( ⊥ ‘ 𝐻 )  +ℋ  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) ) )  →  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  =  𝑦  ↔  ( 𝑦  ∈  ( ⊥ ‘ 𝐻 )  ∧  ∃ 𝑥  ∈  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) ) ) | 
						
							| 46 | 36 44 45 | syl2anc | ⊢ ( 𝜑  →  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  =  𝑦  ↔  ( 𝑦  ∈  ( ⊥ ‘ 𝐻 )  ∧  ∃ 𝑥  ∈  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  =  𝑦  ↔  ( 𝑦  ∈  ( ⊥ ‘ 𝐻 )  ∧  ∃ 𝑥  ∈  ( ⊥ ‘ ( ⊥ ‘ 𝐻 ) ) 𝐴  =  ( 𝑦  +ℎ  𝑥 ) ) ) ) | 
						
							| 48 | 12 34 47 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 )  =  𝑦 ) | 
						
							| 49 | 18 48 | oveq12d | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) )  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 50 | 10 49 | eqtr4d | ⊢ ( ( 𝜑  ∧  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  ∧  𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) )  →  𝐴  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) | 
						
							| 51 | 50 | exp32 | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝐻  ∧  𝑦  ∈  ( ⊥ ‘ 𝐻 ) )  →  ( 𝐴  =  ( 𝑥  +ℎ  𝑦 )  →  𝐴  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) ) | 
						
							| 52 | 51 | rexlimdvv | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 )  →  𝐴  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) ) | 
						
							| 53 | 9 52 | mpd | ⊢ ( 𝜑  →  𝐴  =  ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 )  +ℎ  ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |