Metamath Proof Explorer


Theorem pjss2i

Description: Subset relationship for projections. Theorem 4.5(i)->(ii) of Beran p. 112. (Contributed by NM, 31-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 HC
pjidm.2 A
pjsslem.1 GC
Assertion pjss2i HGprojHprojGA=projHA

Proof

Step Hyp Ref Expression
1 pjidm.1 HC
2 pjidm.2 A
3 pjsslem.1 GC
4 1 choccli HC
5 4 2 pjclii projHAH
6 1 3 chsscon3i HGGH
7 3 choccli GC
8 7 2 pjclii projGAG
9 ssel GHprojGAGprojGAH
10 8 9 mpi GHprojGAH
11 6 10 sylbi HGprojGAH
12 4 chshii HS
13 shsubcl HSprojHAHprojGAHprojHA-projGAH
14 12 13 mp3an1 projHAHprojGAHprojHA-projGAH
15 5 11 14 sylancr HGprojHA-projGAH
16 1 2 3 pjsslem projHA-projGA=projGA-projHA
17 16 eleq1i projHA-projGAHprojGA-projHAH
18 3 2 pjhclii projGA
19 1 2 pjhclii projHA
20 18 19 hvsubcli projGA-projHA
21 1 20 pjoc2i projGA-projHAHprojHprojGA-projHA=0
22 17 21 bitri projHA-projGAHprojHprojGA-projHA=0
23 1 18 19 pjsubii projHprojGA-projHA=projHprojGA-projHprojHA
24 23 eqeq1i projHprojGA-projHA=0projHprojGA-projHprojHA=0
25 1 18 pjhclii projHprojGA
26 1 19 pjhclii projHprojHA
27 25 26 hvsubeq0i projHprojGA-projHprojHA=0projHprojGA=projHprojHA
28 24 27 bitri projHprojGA-projHA=0projHprojGA=projHprojHA
29 1 2 pjidmi projHprojHA=projHA
30 29 eqeq2i projHprojGA=projHprojHAprojHprojGA=projHA
31 22 28 30 3bitrri projHprojGA=projHAprojHA-projGAH
32 15 31 sylibr HGprojHprojGA=projHA