Metamath Proof Explorer


Theorem ply1annidl

Description: The set Q of polynomials annihilating an element A forms an ideal. (Contributed by Thierry Arnoux, 9-Feb-2025)

Ref Expression
Hypotheses ply1annidl.o O=RevalSub1S
ply1annidl.p P=Poly1R𝑠S
ply1annidl.b B=BaseR
ply1annidl.r φRCRing
ply1annidl.s φSSubRingR
ply1annidl.a φAB
ply1annidl.0 0˙=0R
ply1annidl.q Q=qdomO|OqA=0˙
Assertion ply1annidl φQLIdealP

Proof

Step Hyp Ref Expression
1 ply1annidl.o O=RevalSub1S
2 ply1annidl.p P=Poly1R𝑠S
3 ply1annidl.b B=BaseR
4 ply1annidl.r φRCRing
5 ply1annidl.s φSSubRingR
6 ply1annidl.a φAB
7 ply1annidl.0 0˙=0R
8 ply1annidl.q Q=qdomO|OqA=0˙
9 eqid pBasePOpA=pBasePOpA
10 1 2 3 4 5 6 7 8 9 ply1annidllem φQ=pBasePOpA-10˙
11 eqid BaseP=BaseP
12 1 2 3 11 4 5 6 9 evls1maprhm φpBasePOpAPRingHomR
13 4 crngringd φRRing
14 eqid LIdealR=LIdealR
15 14 7 lidl0 RRing0˙LIdealR
16 13 15 syl φ0˙LIdealR
17 eqid LIdealP=LIdealP
18 17 rhmpreimaidl pBasePOpAPRingHomR0˙LIdealRpBasePOpA-10˙LIdealP
19 12 16 18 syl2anc φpBasePOpA-10˙LIdealP
20 10 19 eqeltrd φQLIdealP