Description: Write the set Q of polynomials annihilating an element A as the kernel of the ring homomorphism F mapping polynomials p to their subring evaluation at a given point A . (Contributed by Thierry Arnoux, 9-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1annidl.o | |
|
ply1annidl.p | |
||
ply1annidl.b | |
||
ply1annidl.r | |
||
ply1annidl.s | |
||
ply1annidl.a | |
||
ply1annidl.0 | |
||
ply1annidl.q | |
||
ply1annidllem.f | |
||
Assertion | ply1annidllem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1annidl.o | |
|
2 | ply1annidl.p | |
|
3 | ply1annidl.b | |
|
4 | ply1annidl.r | |
|
5 | ply1annidl.s | |
|
6 | ply1annidl.a | |
|
7 | ply1annidl.0 | |
|
8 | ply1annidl.q | |
|
9 | ply1annidllem.f | |
|
10 | nfv | |
|
11 | fvexd | |
|
12 | 10 11 9 | fnmptd | |
13 | eqid | |
|
14 | 1 2 13 4 5 | evls1fn | |
15 | 14 | fndmd | |
16 | 15 | fneq2d | |
17 | 12 16 | mpbird | |
18 | fniniseg2 | |
|
19 | 17 18 | syl | |
20 | fveq2 | |
|
21 | 20 | fveq1d | |
22 | 15 | eleq2d | |
23 | 22 | biimpa | |
24 | fvexd | |
|
25 | 9 21 23 24 | fvmptd3 | |
26 | 25 | eqeq1d | |
27 | 26 | rabbidva | |
28 | 19 27 | eqtr2d | |
29 | 8 28 | eqtrid | |