Metamath Proof Explorer


Theorem ply1crng

Description: The ring of univariate polynomials is a commutative ring. (Contributed by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypothesis ply1val.1 P=Poly1R
Assertion ply1crng RCRingPCRing

Proof

Step Hyp Ref Expression
1 ply1val.1 P=Poly1R
2 eqid PwSer1R=PwSer1R
3 2 psr1crng RCRingPwSer1RCRing
4 eqid BaseP=BaseP
5 1 2 4 ply1bas BaseP=Base1𝑜mPolyR
6 crngring RCRingRRing
7 1 2 4 ply1subrg RRingBasePSubRingPwSer1R
8 6 7 syl RCRingBasePSubRingPwSer1R
9 5 8 eqeltrrid RCRingBase1𝑜mPolyRSubRingPwSer1R
10 1 2 ply1val P=PwSer1R𝑠Base1𝑜mPolyR
11 10 subrgcrng PwSer1RCRingBase1𝑜mPolyRSubRingPwSer1RPCRing
12 3 9 11 syl2anc RCRingPCRing