Metamath Proof Explorer


Theorem ply1fermltl

Description: Fermat's little theorem for polynomials. If P is prime, Then ( X + A ) ^ P = ( ( X ^ P ) + A ) modulo P . (Contributed by Thierry Arnoux, 24-Jul-2024)

Ref Expression
Hypotheses ply1fermltl.z Z=/P
ply1fermltl.w W=Poly1Z
ply1fermltl.x X=var1Z
ply1fermltl.l +˙=+W
ply1fermltl.n N=mulGrpW
ply1fermltl.t ×˙=N
ply1fermltl.c C=algScW
ply1fermltl.a A=CℤRHomZE
ply1fermltl.p φP
ply1fermltl.1 φE
Assertion ply1fermltl φP×˙X+˙A=P×˙X+˙A

Proof

Step Hyp Ref Expression
1 ply1fermltl.z Z=/P
2 ply1fermltl.w W=Poly1Z
3 ply1fermltl.x X=var1Z
4 ply1fermltl.l +˙=+W
5 ply1fermltl.n N=mulGrpW
6 ply1fermltl.t ×˙=N
7 ply1fermltl.c C=algScW
8 ply1fermltl.a A=CℤRHomZE
9 ply1fermltl.p φP
10 ply1fermltl.1 φE
11 eqid chrZ=chrZ
12 prmnn PP
13 nnnn0 PP0
14 1 zncrng P0ZCRing
15 9 12 13 14 4syl φZCRing
16 1 znchr P0chrZ=P
17 9 12 13 16 4syl φchrZ=P
18 17 9 eqeltrd φchrZ
19 2 3 4 5 6 7 8 11 15 18 10 ply1fermltlchr φchrZ×˙X+˙A=chrZ×˙X+˙A
20 17 oveq1d φchrZ×˙X+˙A=P×˙X+˙A
21 17 oveq1d φchrZ×˙X=P×˙X
22 21 oveq1d φchrZ×˙X+˙A=P×˙X+˙A
23 19 20 22 3eqtr3d φP×˙X+˙A=P×˙X+˙A