Description: Fermat's little theorem for polynomials. If P is prime, Then ( X + A ) ^ P = ( ( X ^ P ) + A ) modulo P . (Contributed by Thierry Arnoux, 24-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ply1fermltl.z | |
|
ply1fermltl.w | |
||
ply1fermltl.x | |
||
ply1fermltl.l | |
||
ply1fermltl.n | |
||
ply1fermltl.t | |
||
ply1fermltl.c | |
||
ply1fermltl.a | |
||
ply1fermltl.p | |
||
ply1fermltl.1 | |
||
Assertion | ply1fermltl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ply1fermltl.z | |
|
2 | ply1fermltl.w | |
|
3 | ply1fermltl.x | |
|
4 | ply1fermltl.l | |
|
5 | ply1fermltl.n | |
|
6 | ply1fermltl.t | |
|
7 | ply1fermltl.c | |
|
8 | ply1fermltl.a | |
|
9 | ply1fermltl.p | |
|
10 | ply1fermltl.1 | |
|
11 | eqid | |
|
12 | prmnn | |
|
13 | nnnn0 | |
|
14 | 1 | zncrng | |
15 | 9 12 13 14 | 4syl | |
16 | 1 | znchr | |
17 | 9 12 13 16 | 4syl | |
18 | 17 9 | eqeltrd | |
19 | 2 3 4 5 6 7 8 11 15 18 10 | ply1fermltlchr | |
20 | 17 | oveq1d | |
21 | 17 | oveq1d | |
22 | 21 | oveq1d | |
23 | 19 20 22 | 3eqtr3d | |