| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
|
| 2 |
|
0re |
|
| 3 |
|
eqid |
|
| 4 |
3
|
coef2 |
|
| 5 |
2 4
|
mpan2 |
|
| 6 |
5
|
adantr |
|
| 7 |
|
elfznn0 |
|
| 8 |
|
ffvelcdm |
|
| 9 |
6 7 8
|
syl2an |
|
| 10 |
9
|
recnd |
|
| 11 |
|
simpr |
|
| 12 |
|
expcl |
|
| 13 |
11 7 12
|
syl2an |
|
| 14 |
10 13
|
mulcld |
|
| 15 |
1 14
|
fsumcj |
|
| 16 |
10 13
|
cjmuld |
|
| 17 |
9
|
cjred |
|
| 18 |
|
cjexp |
|
| 19 |
11 7 18
|
syl2an |
|
| 20 |
17 19
|
oveq12d |
|
| 21 |
16 20
|
eqtrd |
|
| 22 |
21
|
sumeq2dv |
|
| 23 |
15 22
|
eqtrd |
|
| 24 |
|
eqid |
|
| 25 |
3 24
|
coeid2 |
|
| 26 |
25
|
fveq2d |
|
| 27 |
|
cjcl |
|
| 28 |
3 24
|
coeid2 |
|
| 29 |
27 28
|
sylan2 |
|
| 30 |
23 26 29
|
3eqtr4d |
|