Metamath Proof Explorer


Theorem pmapocjN

Description: The projective map of the orthocomplement of the join of two lattice elements. (Contributed by NM, 14-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmapocj.b B=BaseK
pmapocj.j ˙=joinK
pmapocj.m ˙=meetK
pmapocj.o ˙=ocK
pmapocj.f F=pmapK
pmapocj.p +˙=+𝑃K
pmapocj.r N=𝑃K
Assertion pmapocjN KHLXBYBF˙X˙Y=NFX+˙FY

Proof

Step Hyp Ref Expression
1 pmapocj.b B=BaseK
2 pmapocj.j ˙=joinK
3 pmapocj.m ˙=meetK
4 pmapocj.o ˙=ocK
5 pmapocj.f F=pmapK
6 pmapocj.p +˙=+𝑃K
7 pmapocj.r N=𝑃K
8 1 2 5 6 7 pmapj2N KHLXBYBFX˙Y=NNFX+˙FY
9 8 fveq2d KHLXBYBNFX˙Y=NNNFX+˙FY
10 simp1 KHLXBYBKHL
11 hllat KHLKLat
12 1 2 latjcl KLatXBYBX˙YB
13 11 12 syl3an1 KHLXBYBX˙YB
14 1 4 5 7 polpmapN KHLX˙YBNFX˙Y=F˙X˙Y
15 10 13 14 syl2anc KHLXBYBNFX˙Y=F˙X˙Y
16 eqid AtomsK=AtomsK
17 1 16 5 pmapssat KHLXBFXAtomsK
18 17 3adant3 KHLXBYBFXAtomsK
19 1 16 5 pmapssat KHLYBFYAtomsK
20 19 3adant2 KHLXBYBFYAtomsK
21 16 6 paddssat KHLFXAtomsKFYAtomsKFX+˙FYAtomsK
22 10 18 20 21 syl3anc KHLXBYBFX+˙FYAtomsK
23 16 7 3polN KHLFX+˙FYAtomsKNNNFX+˙FY=NFX+˙FY
24 10 22 23 syl2anc KHLXBYBNNNFX+˙FY=NFX+˙FY
25 9 15 24 3eqtr3d KHLXBYBF˙X˙Y=NFX+˙FY