Metamath Proof Explorer


Theorem pmapojoinN

Description: For orthogonal elements, projective map of join equals projective sum. Compare pmapjoin where only one direction holds. (Contributed by NM, 11-Apr-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmapojoin.b B=BaseK
pmapojoin.l ˙=K
pmapojoin.j ˙=joinK
pmapojoin.m M=pmapK
pmapojoin.o ˙=ocK
pmapojoin.p +˙=+𝑃K
Assertion pmapojoinN KHLXBYBX˙˙YMX˙Y=MX+˙MY

Proof

Step Hyp Ref Expression
1 pmapojoin.b B=BaseK
2 pmapojoin.l ˙=K
3 pmapojoin.j ˙=joinK
4 pmapojoin.m M=pmapK
5 pmapojoin.o ˙=ocK
6 pmapojoin.p +˙=+𝑃K
7 eqid 𝑃K=𝑃K
8 1 3 4 6 7 pmapj2N KHLXBYBMX˙Y=𝑃K𝑃KMX+˙MY
9 8 adantr KHLXBYBX˙˙YMX˙Y=𝑃K𝑃KMX+˙MY
10 simpl1 KHLXBYBX˙˙YKHL
11 simpl2 KHLXBYBX˙˙YXB
12 eqid PSubClK=PSubClK
13 1 4 12 pmapsubclN KHLXBMXPSubClK
14 10 11 13 syl2anc KHLXBYBX˙˙YMXPSubClK
15 simpl3 KHLXBYBX˙˙YYB
16 1 4 12 pmapsubclN KHLYBMYPSubClK
17 10 15 16 syl2anc KHLXBYBX˙˙YMYPSubClK
18 hlop KHLKOP
19 18 3ad2ant1 KHLXBYBKOP
20 simp3 KHLXBYBYB
21 1 5 opoccl KOPYB˙YB
22 19 20 21 syl2anc KHLXBYB˙YB
23 1 2 4 pmaple KHLXB˙YBX˙˙YMXM˙Y
24 22 23 syld3an3 KHLXBYBX˙˙YMXM˙Y
25 24 biimpa KHLXBYBX˙˙YMXM˙Y
26 1 5 4 7 polpmapN KHLYB𝑃KMY=M˙Y
27 10 15 26 syl2anc KHLXBYBX˙˙Y𝑃KMY=M˙Y
28 25 27 sseqtrrd KHLXBYBX˙˙YMX𝑃KMY
29 6 7 12 osumclN KHLMXPSubClKMYPSubClKMX𝑃KMYMX+˙MYPSubClK
30 10 14 17 28 29 syl31anc KHLXBYBX˙˙YMX+˙MYPSubClK
31 7 12 psubcli2N KHLMX+˙MYPSubClK𝑃K𝑃KMX+˙MY=MX+˙MY
32 10 30 31 syl2anc KHLXBYBX˙˙Y𝑃K𝑃KMX+˙MY=MX+˙MY
33 9 32 eqtrd KHLXBYBX˙˙YMX˙Y=MX+˙MY