Metamath Proof Explorer


Theorem pmresg

Description: Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013)

Ref Expression
Assertion pmresg BVFA𝑝𝑚CFBA𝑝𝑚B

Proof

Step Hyp Ref Expression
1 n0i FA𝑝𝑚C¬A𝑝𝑚C=
2 fnpm 𝑝𝑚FnV×V
3 2 fndmi dom𝑝𝑚=V×V
4 3 ndmov ¬AVCVA𝑝𝑚C=
5 1 4 nsyl2 FA𝑝𝑚CAVCV
6 5 simpld FA𝑝𝑚CAV
7 6 adantl BVFA𝑝𝑚CAV
8 simpl BVFA𝑝𝑚CBV
9 elpmi FA𝑝𝑚CF:domFAdomFC
10 9 simpld FA𝑝𝑚CF:domFA
11 10 adantl BVFA𝑝𝑚CF:domFA
12 inss1 domFBdomF
13 fssres F:domFAdomFBdomFFdomFB:domFBA
14 11 12 13 sylancl BVFA𝑝𝑚CFdomFB:domFBA
15 ffun F:domFAFunF
16 resres FdomFB=FdomFB
17 funrel FunFRelF
18 resdm RelFFdomF=F
19 reseq1 FdomF=FFdomFB=FB
20 17 18 19 3syl FunFFdomFB=FB
21 16 20 eqtr3id FunFFdomFB=FB
22 11 15 21 3syl BVFA𝑝𝑚CFdomFB=FB
23 22 feq1d BVFA𝑝𝑚CFdomFB:domFBAFB:domFBA
24 14 23 mpbid BVFA𝑝𝑚CFB:domFBA
25 inss2 domFBB
26 elpm2r AVBVFB:domFBAdomFBBFBA𝑝𝑚B
27 25 26 mpanr2 AVBVFB:domFBAFBA𝑝𝑚B
28 7 8 24 27 syl21anc BVFA𝑝𝑚CFBA𝑝𝑚B