Metamath Proof Explorer


Theorem pmtrdifwrdel

Description: A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set. (Contributed by AV, 15-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T=ranpmTrspNK
pmtrdifel.r R=ranpmTrspN
Assertion pmtrdifwrdel wWordTuWordRw=ui0..^wxNKwix=uix

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T=ranpmTrspNK
2 pmtrdifel.r R=ranpmTrspN
3 fveq2 j=nwj=wn
4 3 difeq1d j=nwjI=wnI
5 4 dmeqd j=ndomwjI=domwnI
6 5 fveq2d j=npmTrspNdomwjI=pmTrspNdomwnI
7 6 cbvmptv j0..^wpmTrspNdomwjI=n0..^wpmTrspNdomwnI
8 1 2 7 pmtrdifwrdellem1 wWordTj0..^wpmTrspNdomwjIWordR
9 1 2 7 pmtrdifwrdellem2 wWordTw=j0..^wpmTrspNdomwjI
10 1 2 7 pmtrdifwrdellem3 wWordTi0..^wxNKwix=j0..^wpmTrspNdomwjIix
11 fveq2 u=j0..^wpmTrspNdomwjIu=j0..^wpmTrspNdomwjI
12 11 eqeq2d u=j0..^wpmTrspNdomwjIw=uw=j0..^wpmTrspNdomwjI
13 fveq1 u=j0..^wpmTrspNdomwjIui=j0..^wpmTrspNdomwjIi
14 13 fveq1d u=j0..^wpmTrspNdomwjIuix=j0..^wpmTrspNdomwjIix
15 14 eqeq2d u=j0..^wpmTrspNdomwjIwix=uixwix=j0..^wpmTrspNdomwjIix
16 15 2ralbidv u=j0..^wpmTrspNdomwjIi0..^wxNKwix=uixi0..^wxNKwix=j0..^wpmTrspNdomwjIix
17 12 16 anbi12d u=j0..^wpmTrspNdomwjIw=ui0..^wxNKwix=uixw=j0..^wpmTrspNdomwjIi0..^wxNKwix=j0..^wpmTrspNdomwjIix
18 17 rspcev j0..^wpmTrspNdomwjIWordRw=j0..^wpmTrspNdomwjIi0..^wxNKwix=j0..^wpmTrspNdomwjIixuWordRw=ui0..^wxNKwix=uix
19 8 9 10 18 syl12anc wWordTuWordRw=ui0..^wxNKwix=uix
20 19 rgen wWordTuWordRw=ui0..^wxNKwix=uix