| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrrn.t |  | 
						
							| 2 |  | pmtrrn.r |  | 
						
							| 3 | 1 2 | pmtrfb |  | 
						
							| 4 | 3 | simp1bi |  | 
						
							| 5 | 4 | adantr |  | 
						
							| 6 |  | simpr |  | 
						
							| 7 | 1 2 | pmtrff1o |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 |  | f1oco |  | 
						
							| 10 | 6 8 9 | syl2anc |  | 
						
							| 11 |  | f1ocnv |  | 
						
							| 12 | 11 | adantl |  | 
						
							| 13 |  | f1oco |  | 
						
							| 14 | 10 12 13 | syl2anc |  | 
						
							| 15 |  | f1of |  | 
						
							| 16 | 7 15 | syl |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 |  | f1omvdconj |  | 
						
							| 19 | 17 6 18 | syl2anc |  | 
						
							| 20 |  | f1of1 |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 |  | difss |  | 
						
							| 23 |  | dmss |  | 
						
							| 24 | 22 23 | ax-mp |  | 
						
							| 25 | 24 17 | fssdm |  | 
						
							| 26 | 5 25 | ssexd |  | 
						
							| 27 |  | f1imaeng |  | 
						
							| 28 | 21 25 26 27 | syl3anc |  | 
						
							| 29 | 19 28 | eqbrtrd |  | 
						
							| 30 | 3 | simp3bi |  | 
						
							| 31 | 30 | adantr |  | 
						
							| 32 |  | entr |  | 
						
							| 33 | 29 31 32 | syl2anc |  | 
						
							| 34 | 1 2 | pmtrfb |  | 
						
							| 35 | 5 14 33 34 | syl3anbrc |  |