Description: Any conjugate of a transposition is a transposition. (Contributed by Stefan O'Rear, 22-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmtrrn.t | |
|
pmtrrn.r | |
||
Assertion | pmtrfconj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrrn.t | |
|
2 | pmtrrn.r | |
|
3 | 1 2 | pmtrfb | |
4 | 3 | simp1bi | |
5 | 4 | adantr | |
6 | simpr | |
|
7 | 1 2 | pmtrff1o | |
8 | 7 | adantr | |
9 | f1oco | |
|
10 | 6 8 9 | syl2anc | |
11 | f1ocnv | |
|
12 | 11 | adantl | |
13 | f1oco | |
|
14 | 10 12 13 | syl2anc | |
15 | f1of | |
|
16 | 7 15 | syl | |
17 | 16 | adantr | |
18 | f1omvdconj | |
|
19 | 17 6 18 | syl2anc | |
20 | f1of1 | |
|
21 | 20 | adantl | |
22 | difss | |
|
23 | dmss | |
|
24 | 22 23 | ax-mp | |
25 | 24 17 | fssdm | |
26 | 5 25 | ssexd | |
27 | f1imaeng | |
|
28 | 21 25 26 27 | syl3anc | |
29 | 19 28 | eqbrtrd | |
30 | 3 | simp3bi | |
31 | 30 | adantr | |
32 | entr | |
|
33 | 29 31 32 | syl2anc | |
34 | 1 2 | pmtrfb | |
35 | 5 14 33 34 | syl3anbrc | |