Metamath Proof Explorer


Theorem pmtrfconj

Description: Any conjugate of a transposition is a transposition. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Hypotheses pmtrrn.t T=pmTrspD
pmtrrn.r R=ranT
Assertion pmtrfconj FRG:D1-1 ontoDGFG-1R

Proof

Step Hyp Ref Expression
1 pmtrrn.t T=pmTrspD
2 pmtrrn.r R=ranT
3 1 2 pmtrfb FRDVF:D1-1 ontoDdomFI2𝑜
4 3 simp1bi FRDV
5 4 adantr FRG:D1-1 ontoDDV
6 simpr FRG:D1-1 ontoDG:D1-1 ontoD
7 1 2 pmtrff1o FRF:D1-1 ontoD
8 7 adantr FRG:D1-1 ontoDF:D1-1 ontoD
9 f1oco G:D1-1 ontoDF:D1-1 ontoDGF:D1-1 ontoD
10 6 8 9 syl2anc FRG:D1-1 ontoDGF:D1-1 ontoD
11 f1ocnv G:D1-1 ontoDG-1:D1-1 ontoD
12 11 adantl FRG:D1-1 ontoDG-1:D1-1 ontoD
13 f1oco GF:D1-1 ontoDG-1:D1-1 ontoDGFG-1:D1-1 ontoD
14 10 12 13 syl2anc FRG:D1-1 ontoDGFG-1:D1-1 ontoD
15 f1of F:D1-1 ontoDF:DD
16 7 15 syl FRF:DD
17 16 adantr FRG:D1-1 ontoDF:DD
18 f1omvdconj F:DDG:D1-1 ontoDdomGFG-1I=GdomFI
19 17 6 18 syl2anc FRG:D1-1 ontoDdomGFG-1I=GdomFI
20 f1of1 G:D1-1 ontoDG:D1-1D
21 20 adantl FRG:D1-1 ontoDG:D1-1D
22 difss FIF
23 dmss FIFdomFIdomF
24 22 23 ax-mp domFIdomF
25 24 17 fssdm FRG:D1-1 ontoDdomFID
26 5 25 ssexd FRG:D1-1 ontoDdomFIV
27 f1imaeng G:D1-1DdomFIDdomFIVGdomFIdomFI
28 21 25 26 27 syl3anc FRG:D1-1 ontoDGdomFIdomFI
29 19 28 eqbrtrd FRG:D1-1 ontoDdomGFG-1IdomFI
30 3 simp3bi FRdomFI2𝑜
31 30 adantr FRG:D1-1 ontoDdomFI2𝑜
32 entr domGFG-1IdomFIdomFI2𝑜domGFG-1I2𝑜
33 29 31 32 syl2anc FRG:D1-1 ontoDdomGFG-1I2𝑜
34 1 2 pmtrfb GFG-1RDVGFG-1:D1-1 ontoDdomGFG-1I2𝑜
35 5 14 33 34 syl3anbrc FRG:D1-1 ontoDGFG-1R