Metamath Proof Explorer


Theorem pmtrfv

Description: General value of mapping a point under a transposition. (Contributed by Stefan O'Rear, 16-Aug-2015)

Ref Expression
Hypothesis pmtrfval.t T=pmTrspD
Assertion pmtrfv DVPDP2𝑜ZDTPZ=ifZPPZZ

Proof

Step Hyp Ref Expression
1 pmtrfval.t T=pmTrspD
2 1 pmtrval DVPDP2𝑜TP=zDifzPPzz
3 2 fveq1d DVPDP2𝑜TPZ=zDifzPPzzZ
4 3 adantr DVPDP2𝑜ZDTPZ=zDifzPPzzZ
5 eqid zDifzPPzz=zDifzPPzz
6 eleq1 z=ZzPZP
7 sneq z=Zz=Z
8 7 difeq2d z=ZPz=PZ
9 8 unieqd z=ZPz=PZ
10 id z=Zz=Z
11 6 9 10 ifbieq12d z=ZifzPPzz=ifZPPZZ
12 simpr DVPDP2𝑜ZDZD
13 simpl3 DVPDP2𝑜ZDP2𝑜
14 relen Rel
15 14 brrelex1i P2𝑜PV
16 difexg PVPZV
17 uniexg PZVPZV
18 13 15 16 17 4syl DVPDP2𝑜ZDPZV
19 ifexg PZVZDifZPPZZV
20 18 19 sylancom DVPDP2𝑜ZDifZPPZZV
21 5 11 12 20 fvmptd3 DVPDP2𝑜ZDzDifzPPzzZ=ifZPPZZ
22 4 21 eqtrd DVPDP2𝑜ZDTPZ=ifZPPZZ