Description: A partial order is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015) (Proof shortened by Peter Mazsa, 2-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | poirr2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres | |
|
2 | relin2 | |
|
3 | 1 2 | mp1i | |
4 | df-br | |
|
5 | brin | |
|
6 | 4 5 | bitr3i | |
7 | vex | |
|
8 | 7 | brresi | |
9 | poirr | |
|
10 | 7 | ideq | |
11 | breq2 | |
|
12 | 10 11 | sylbi | |
13 | 12 | notbid | |
14 | 9 13 | syl5ibcom | |
15 | 14 | expimpd | |
16 | 8 15 | biimtrid | |
17 | 16 | con2d | |
18 | imnan | |
|
19 | 17 18 | sylib | |
20 | 19 | pm2.21d | |
21 | 6 20 | biimtrid | |
22 | 3 21 | relssdv | |
23 | ss0 | |
|
24 | 22 23 | syl | |