Metamath Proof Explorer


Theorem poirr2

Description: A partial order is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion poirr2 RPoARIA=

Proof

Step Hyp Ref Expression
1 relres RelIA
2 relin2 RelIARelRIA
3 1 2 mp1i RPoARelRIA
4 df-br xRIAyxyRIA
5 brin xRIAyxRyxIAy
6 4 5 bitr3i xyRIAxRyxIAy
7 vex yV
8 7 brresi xIAyxAxIy
9 poirr RPoAxA¬xRx
10 7 ideq xIyx=y
11 breq2 x=yxRxxRy
12 10 11 sylbi xIyxRxxRy
13 12 notbid xIy¬xRx¬xRy
14 9 13 syl5ibcom RPoAxAxIy¬xRy
15 14 expimpd RPoAxAxIy¬xRy
16 8 15 biimtrid RPoAxIAy¬xRy
17 16 con2d RPoAxRy¬xIAy
18 imnan xRy¬xIAy¬xRyxIAy
19 17 18 sylib RPoA¬xRyxIAy
20 19 pm2.21d RPoAxRyxIAyxy
21 6 20 biimtrid RPoAxyRIAxy
22 3 21 relssdv RPoARIA
23 ss0 RIARIA=
24 22 23 syl RPoARIA=