Metamath Proof Explorer


Theorem posi

Description: Lemma for poset properties. (Contributed by NM, 11-Sep-2011)

Ref Expression
Hypotheses posi.b B=BaseK
posi.l ˙=K
Assertion posi KPosetXBYBZBX˙XX˙YY˙XX=YX˙YY˙ZX˙Z

Proof

Step Hyp Ref Expression
1 posi.b B=BaseK
2 posi.l ˙=K
3 1 2 ispos KPosetKVxByBzBx˙xx˙yy˙xx=yx˙yy˙zx˙z
4 3 simprbi KPosetxByBzBx˙xx˙yy˙xx=yx˙yy˙zx˙z
5 breq1 x=Xx˙xX˙x
6 breq2 x=XX˙xX˙X
7 5 6 bitrd x=Xx˙xX˙X
8 breq1 x=Xx˙yX˙y
9 breq2 x=Xy˙xy˙X
10 8 9 anbi12d x=Xx˙yy˙xX˙yy˙X
11 eqeq1 x=Xx=yX=y
12 10 11 imbi12d x=Xx˙yy˙xx=yX˙yy˙XX=y
13 8 anbi1d x=Xx˙yy˙zX˙yy˙z
14 breq1 x=Xx˙zX˙z
15 13 14 imbi12d x=Xx˙yy˙zx˙zX˙yy˙zX˙z
16 7 12 15 3anbi123d x=Xx˙xx˙yy˙xx=yx˙yy˙zx˙zX˙XX˙yy˙XX=yX˙yy˙zX˙z
17 breq2 y=YX˙yX˙Y
18 breq1 y=Yy˙XY˙X
19 17 18 anbi12d y=YX˙yy˙XX˙YY˙X
20 eqeq2 y=YX=yX=Y
21 19 20 imbi12d y=YX˙yy˙XX=yX˙YY˙XX=Y
22 breq1 y=Yy˙zY˙z
23 17 22 anbi12d y=YX˙yy˙zX˙YY˙z
24 23 imbi1d y=YX˙yy˙zX˙zX˙YY˙zX˙z
25 21 24 3anbi23d y=YX˙XX˙yy˙XX=yX˙yy˙zX˙zX˙XX˙YY˙XX=YX˙YY˙zX˙z
26 breq2 z=ZY˙zY˙Z
27 26 anbi2d z=ZX˙YY˙zX˙YY˙Z
28 breq2 z=ZX˙zX˙Z
29 27 28 imbi12d z=ZX˙YY˙zX˙zX˙YY˙ZX˙Z
30 29 3anbi3d z=ZX˙XX˙YY˙XX=YX˙YY˙zX˙zX˙XX˙YY˙XX=YX˙YY˙ZX˙Z
31 16 25 30 rspc3v XBYBZBxByBzBx˙xx˙yy˙xx=yx˙yy˙zx˙zX˙XX˙YY˙XX=YX˙YY˙ZX˙Z
32 4 31 mpan9 KPosetXBYBZBX˙XX˙YY˙XX=YX˙YY˙ZX˙Z