Metamath Proof Explorer


Theorem pospropd

Description: Posethood is determined only by structure components and only by the value of the relation within the base set. (Contributed by Stefan O'Rear, 29-Jan-2015)

Ref Expression
Hypotheses pospropd.kv φKV
pospropd.lv φLW
pospropd.kb φB=BaseK
pospropd.lb φB=BaseL
pospropd.xy φxByBxKyxLy
Assertion pospropd φKPosetLPoset

Proof

Step Hyp Ref Expression
1 pospropd.kv φKV
2 pospropd.lv φLW
3 pospropd.kb φB=BaseK
4 pospropd.lb φB=BaseL
5 pospropd.xy φxByBxKyxLy
6 5 ralrimivva φxByBxKyxLy
7 simp1 aBbBcBaB
8 7 7 jca aBbBcBaBaB
9 breq1 x=axKyaKy
10 breq1 x=axLyaLy
11 9 10 bibi12d x=axKyxLyaKyaLy
12 breq2 y=aaKyaKa
13 breq2 y=aaLyaLa
14 12 13 bibi12d y=aaKyaLyaKaaLa
15 11 14 rspc2va aBaBxByBxKyxLyaKaaLa
16 8 15 sylan aBbBcBxByBxKyxLyaKaaLa
17 breq2 y=baKyaKb
18 breq2 y=baLyaLb
19 17 18 bibi12d y=baKyaLyaKbaLb
20 11 19 rspc2va aBbBxByBxKyxLyaKbaLb
21 20 3adantl3 aBbBcBxByBxKyxLyaKbaLb
22 3simpb bBcBaBbBaB
23 22 3comr aBbBcBbBaB
24 breq1 x=bxKybKy
25 breq1 x=bxLybLy
26 24 25 bibi12d x=bxKyxLybKybLy
27 breq2 y=abKybKa
28 breq2 y=abLybLa
29 27 28 bibi12d y=abKybLybKabLa
30 26 29 rspc2va bBaBxByBxKyxLybKabLa
31 23 30 sylan aBbBcBxByBxKyxLybKabLa
32 21 31 anbi12d aBbBcBxByBxKyxLyaKbbKaaLbbLa
33 32 imbi1d aBbBcBxByBxKyxLyaKbbKaa=baLbbLaa=b
34 breq2 y=cbKybKc
35 breq2 y=cbLybLc
36 34 35 bibi12d y=cbKybLybKcbLc
37 26 36 rspc2va bBcBxByBxKyxLybKcbLc
38 37 3adantl1 aBbBcBxByBxKyxLybKcbLc
39 21 38 anbi12d aBbBcBxByBxKyxLyaKbbKcaLbbLc
40 3simpb aBbBcBaBcB
41 breq2 y=caKyaKc
42 breq2 y=caLyaLc
43 41 42 bibi12d y=caKyaLyaKcaLc
44 11 43 rspc2va aBcBxByBxKyxLyaKcaLc
45 40 44 sylan aBbBcBxByBxKyxLyaKcaLc
46 39 45 imbi12d aBbBcBxByBxKyxLyaKbbKcaKcaLbbLcaLc
47 16 33 46 3anbi123d aBbBcBxByBxKyxLyaKaaKbbKaa=baKbbKcaKcaLaaLbbLaa=baLbbLcaLc
48 6 47 sylan2 aBbBcBφaKaaKbbKaa=baKbbKcaKcaLaaLbbLaa=baLbbLcaLc
49 48 ancoms φaBbBcBaKaaKbbKaa=baKbbKcaKcaLaaLbbLaa=baLbbLcaLc
50 49 3exp2 φaBbBcBaKaaKbbKaa=baKbbKcaKcaLaaLbbLaa=baLbbLcaLc
51 50 imp42 φaBbBcBaKaaKbbKaa=baKbbKcaKcaLaaLbbLaa=baLbbLcaLc
52 51 ralbidva φaBbBcBaKaaKbbKaa=baKbbKcaKccBaLaaLbbLaa=baLbbLcaLc
53 52 2ralbidva φaBbBcBaKaaKbbKaa=baKbbKcaKcaBbBcBaLaaLbbLaa=baLbbLcaLc
54 raleq B=BaseKcBaKaaKbbKaa=baKbbKcaKccBaseKaKaaKbbKaa=baKbbKcaKc
55 54 raleqbi1dv B=BaseKbBcBaKaaKbbKaa=baKbbKcaKcbBaseKcBaseKaKaaKbbKaa=baKbbKcaKc
56 55 raleqbi1dv B=BaseKaBbBcBaKaaKbbKaa=baKbbKcaKcaBaseKbBaseKcBaseKaKaaKbbKaa=baKbbKcaKc
57 3 56 syl φaBbBcBaKaaKbbKaa=baKbbKcaKcaBaseKbBaseKcBaseKaKaaKbbKaa=baKbbKcaKc
58 raleq B=BaseLcBaLaaLbbLaa=baLbbLcaLccBaseLaLaaLbbLaa=baLbbLcaLc
59 58 raleqbi1dv B=BaseLbBcBaLaaLbbLaa=baLbbLcaLcbBaseLcBaseLaLaaLbbLaa=baLbbLcaLc
60 59 raleqbi1dv B=BaseLaBbBcBaLaaLbbLaa=baLbbLcaLcaBaseLbBaseLcBaseLaLaaLbbLaa=baLbbLcaLc
61 4 60 syl φaBbBcBaLaaLbbLaa=baLbbLcaLcaBaseLbBaseLcBaseLaLaaLbbLaa=baLbbLcaLc
62 53 57 61 3bitr3d φaBaseKbBaseKcBaseKaKaaKbbKaa=baKbbKcaKcaBaseLbBaseLcBaseLaLaaLbbLaa=baLbbLcaLc
63 1 elexd φKV
64 63 biantrurd φaBaseKbBaseKcBaseKaKaaKbbKaa=baKbbKcaKcKVaBaseKbBaseKcBaseKaKaaKbbKaa=baKbbKcaKc
65 2 elexd φLV
66 65 biantrurd φaBaseLbBaseLcBaseLaLaaLbbLaa=baLbbLcaLcLVaBaseLbBaseLcBaseLaLaaLbbLaa=baLbbLcaLc
67 62 64 66 3bitr3d φKVaBaseKbBaseKcBaseKaKaaKbbKaa=baKbbKcaKcLVaBaseLbBaseLcBaseLaLaaLbbLaa=baLbbLcaLc
68 eqid BaseK=BaseK
69 eqid K=K
70 68 69 ispos KPosetKVaBaseKbBaseKcBaseKaKaaKbbKaa=baKbbKcaKc
71 eqid BaseL=BaseL
72 eqid L=L
73 71 72 ispos LPosetLVaBaseLbBaseLcBaseLaLaaLbbLaa=baLbbLcaLc
74 67 70 73 3bitr4g φKPosetLPoset